@_}1 NIEMOPEN

NIEM Naming and Design Rules (NDR) Version 6.0
Project Specification 01

29 August 2025

This stage:

https://docs.oasis-open.org/niemopen/ndr/v6.0/ps01/ndr-v6.0-ps01.html (Authoritative)
https://docs.oasis-open.org/niemopen/ndr/v6.0/ps01/ndr-v6.0-ps01.pdf

Previous stage:

https://docs.oasis-open.org/niemopen/ndr/v6.0/psd01/ndr-v6.0-psd01.html
https://docs.oasis-open.org/niemopen/ndr/v6.0/psd01/ndr-v6.0-psd01.pdf (Authoritative)

Latest stage:

https://docs.oasis-open.org/niemopen/ndr/v6.0/ndr-v6.0.html (Authoritative)
https://docs.oasis-open.org/niemopen/ndr/v6.0/ndr-v6.0.pdf

Open Project:
OASIS NIEMOpen OP

Project Chair:

Katherine Escobar (katherine.b.escobar.civ@mail.mil), Joint Staff J6

NTAC Technical Steering Committee Chairs:

Brad Bolliger (brad.bolliger@ey.com), EY
James Cabral (im@cabral.org), Individual
Scott Renner (sar@mitre.org), MITRE

Editors:
James Cabral (im@cabral.org), Individual

Tom Carlson (Thomas.Carlson@gtri.gatech.edu), Georgia Tech Research Institute
Scott Renner (sar@mitre.org), MITRE

Related work:
This specification replaces or supersedes:

« National Information Exchange Model Naming and Design Rules. Version 5.0 December 18, 2020. NIEM Technical Architecture
Committee (NTAC). https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html.

This specification is related to:

« NIEM Model Version 6.0. Edited by Christina Medlin.
Latest stage: https://docs.oasis-open.org/niemopen/niem-model/v6.0/niem-model-v6.0.html.

« Conformance Targets Attribute Specification (CTAS) Version 3.0. Edited by Tom Carlson. 22 February 2023. OASIS Project Specification
01. https://docs.oasis-open.org/niemopen/ctas/v3.0/ps01/ctas-v3.0-ps01.html.
Latest stage: https://docs.oasis-open.org/niemopen/ctas/v3.0/ctas-v3.0.html.

Abstract:

fCopyright © OASIS Open 2025. All Rights Reserved. f{formatted_date} - Page 1 of 114

https://docs.oasis-open.org/niemopen/ndr/v6.0/ps01/ndr-v6.0-ps01.html
https://docs.oasis-open.org/niemopen/ndr/v6.0/ps01/ndr-v6.0-ps01.pdf
https://docs.oasis-open.org/niemopen/ndr/v6.0/psd01/ndr-v6.0-psd01.html
https://docs.oasis-open.org/niemopen/ndr/v6.0/psd01/ndr-v6.0-psd01.pdf
https://docs.oasis-open.org/niemopen/ndr/v6.0/ndr-v6.0.html
https://docs.oasis-open.org/niemopen/ndr/v6.0/ndr-v6.0.pdf
https://www.niemopen.org/
https://www.jcs.mil/Directorates/J6-C4-Cyber/
file:///mnt/c/Work/NIEM/niem-naming-design-rules/ey.com
https://mitre.org/
https://gtri.gatech.edu/
https://mitre.org/
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html
https://docs.oasis-open.org/niemopen/niem-model/v6.0/niem-model-v6.0.html
https://docs.oasis-open.org/niemopen/ctas/v3.0/ps01/ctas-v3.0-ps01.html.
https://docs.oasis-open.org/niemopen/ctas/v3.0/ctas-v3.0.html

NIEM is a framework for scalable and reusable data exchange across public and private sectors. It provides the tools and standards necessary
for organizations to define structured data contracts, enabling machine-to-machine communication across diverse use cases like web services
and APls.

This document provides the normative specifications for creating data models, namespaces, schemas, and messages that conform to the
NIEM framework. It defines enforceable rules for naming conventions, documentation, structural integrity, and conformance targets. The
document outlines how developers can use NIEM to define structured data contracts, specifying syntax, semantics, and relationships for
machine-to-machine communication.

Status:

This document was last revised or approved by the Project Governing Board of the OASIS NIEMOpen OP on the above date. The level of
approval is also listed above. Check the "Latest stage" location noted above for possible later revisions of this document. Any other numbered
Versions and other technical work produced by the Open Project (OP) are listed at https://www.niemopen.org/.

Comments on this work can be provided by opening issues in the project repository or by sending email to the project’s public comment list:
niemopen@lists.oasis-open-projects.org. List information is available at https://lists.oasis-open-projects.org/g/niemopen.

Note that any machine-readable content (Computer Language Definitions) declared Normative for this Work Product is provided in separate
plain text files. In the event of a discrepancy between any such plain text file and display content in the Work Product's prose narrative
document(s), the content in the separate plain text file prevails.

Key words:

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT
RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [BCP14]: [RFC 2119] and [RFC 8174]
when, and only when, they appear in all capitals, as shown here.

Citation format:

When referencing this specification the following citation format should be used:

[NIEM-NDR-v6.0]

NIEM Naming and Design Rules (NDR) Version 6.0 Edited by Scott Renner. DATE-TODO. OASIS Project Specification 01.

https://docs.oasis-open.org/niemopen/ndr/v6.0/psd01/ndr-v6.0-ps01.html.
Latest stage: https://docs.oasis-open.org/niemopen/ndr/v6.0/ndr-v6.0.html.

fCopyright © OASIS Open 2025. All Rights Reserved. f{formatted_date} - Page 2 of 114

https://www.niemopen.org/
https://www.oasis-open.org/policies-guidelines/tc-process-2017-05-26/#wpComponentsCompLang
https://docs.oasis-open.org/niemopen/ndr/v6.0/psd01/ndr-v6.0-ps01.html
https://docs.oasis-open.org/niemopen/ndr/v6.0/ndr-v6.0.html

Notices
Copyright © OASIS Open 2025. All Rights Reserved.
Distributed under the terms of the OASISIPR Policy.

For complete copyright information please see the Notices section in the Appendix.

fCopyright © OASIS Open 2025. All Rights Reserved. f{formatted_date} - Page 3 of 114

https://www.oasis-open.org/policies-guidelines/ipr/

Table of Contents

« 1. Introduction
o 1.1 Glossary
= 1.1.1 Definitions of terms
= 1.1.2 Acronyms and abbreviations

o 2. How To Read This Document
o 2.1 Document references
o 2.2 Defined terms
o 2.3 Typographic conventions
o 2.4 Clark notation and qualified names
o 2.5 Use of namespaces and namespace prefixes

¢ 3. Overview of the NIEM Technical Architecture
o 3.1 Machine-to-machine data specifications
= 3.1.1 Messages
= 3.1.2 Message format
= 3.1.3 Message type
= 3.1.4 Message specification
o 3.2 Reuse of community-agreed data models
o 3.3 Reuse of open standards
o 3.4 The NIEM metamodel
o 3.5 NIEM model representations: XSD and CMF
o 3.6 Namespaces
o 3.7 Model extensions
o 3.8 Model and message semantics

¢ 4. Data models in NIEM
o 4.1 Model
o 4.2 Namespace
o 4.3 Component
o 4.4 Class
o 4.5 ChildPropertyAssociation
o 4.6 AnyPropertyAssociation
o 4.7 Property
o 4.8 ObjectProperty
o 4.9 DataProperty
o 4.10 Datatype
o 4.11 List
o 4.12 Union
o 4.13 Restriction
o 4.14 Facet
o 4.15 CodelListBinding
o 4.16 Augmentation class
= 4.16.1 Augmentations in CMF
= 4.16.2 Augmentations in XSD
= 4.16.2.1 Attribute augmentations in XSD
= 4.16.2.2 Augmenting one object class or association class with an element property
= 4.16.2.3 Augmenting every object class or association class with an element property
= 4.16.2.4 Augmenting a literal class with an element property in XSD
o 4.17 LocalTerm
o 4.18 TextType

« 5. Data modeling patterns
o 5.1 Datatypes and literal classes
o 5.2 Metadata and augmentation
o 5.3 Relationship properties
o 5.4 Roles
o 5.5 Representation pattern
o 5.6 Container objects

fCopyright © OASIS Open 2025. All Rights Reserved. f{formatted_date} - Page 4 of 114

« 6. Conformance

o 6.1 Conformance targets
= 6.1.1 Namespace conformance target
= 6.1.2 Schema document conformance target
= 6.1.3 Model conformance target
= 6.1.4 Message conformance target

o 6.2 Conformance target assertions

o 6.3 Conformance testing

o 7. Rules for model components
o 7.1 Rules for component names
= 7.1.1 Rules based on kind of component
= 7.1.1.1 Rules for names of Class components
= 7.1.1.2 Rules for names of Datatype components
= 7.1.1.3 Rules for names of Property components
= 7.1.2 Rules for composition of component names
= 7.1.3 General component naming rules from ISO 11179-5
= 7.1.4 Property naming rules from ISO 11179-5
= 7.1.4.1 Object-class term
= 7.1.4.2 Property term
= 7.1.4.3 Qualifier terms
= 7.1.4.4 Representation term
= 7.1.5 Acronyms, abbreviations, and jargon
o 7.2 Rules for component documentation
= 7.2.1 Rules for documented components
= 7.2.2 Rules for data definitions
= 7.2.3 Data definition rules from ISO 11179-4
= 7.2.4 Data definition opening phrases
= 7.2.4.1 Opening phrases for properties
= 7.2.4.2 Opening phrases for classes
o 7.3 Rules for specifications of components

« 8. Rules for namespaces
o 8.1 Rules for properties of namespaces
o 8.2 Rules for reference namespaces
o 8.3 Rules for extension namespaces
o 8.4 Rules for subset namespaces

¢ 9. Rules for schema documents
o 9.1 Rules for the NIEM profile of XSD
o 9.2 Rules for XSD types
o 9.3 Rules for attribute and element declarations
o 9.4 Rules for adapters and external components
o 9.5 Rules for proxy types
o 9.6 Rules for augmentations
o 9.7 Rules for machine-readable annotations
o 9.8 Rules for reference schema documents
o 9.9 Rules for extension schema documents

« 10. Rules for models
o 10.1 Rules for model files
o 10.2 Rules for schema document sets

« 11. Rules for message types and message formats
o 12. Rules for XML messages
« 13. Rules for JSON messages

o 14. Interpretation of NIEM data
o 14.1 RDF interpretation of NIEM models
= 14.1.1 Model terminology in CMF, XSD, and RDF
= 14.1.2 Identifiers for model components

fCopyright © OASIS Open 2025. All Rights Reserved.

f{formatted_date} - Page 5 of 114

3

.

.

.

3

.

.

3

.

= 14.1.3 RDF interpretation of Class objects

= 14.1.4 RDF interpretation of DataProperty objects

= 14.1.5 RDF interpretation of ObjectProperty objects
o 14.2 RDF interpretation of NIEM messages

= 14.2.1 Objects, properties, and values

= 14.2.2 Messages and message objects

= 14.2.3 Objects and object identifiers

= 14.2.4 Object properties and object class

= 14.2.5 Data properties and literal values

= 14.2.6 Literal class and language tags

= 14.2.7 Repeatable properties

= 14.2.8 Ordered properties

= 14.2.9 Relationship properties

= 14.2.10 Reference attributes

= 14.2.11 Augmentation elements

Appendix A. References
o A.1 Normative References
o A.2 Informative References

Appendix B. Structures namespace

Appendix C. Index of rules

Appendix D. Mapping NIEM 5 rules to NIEM 6
Appendix E. Table of examples

Appendix F. Table of figures

Appendix G. Table of tables

Appendix H. Acknowledgments
o H.1 Participants

Appendix I. Notices

fCopyright © OASIS Open 2025. All Rights Reserved.

f{formatted_date} - Page 6 of 114

1. Introduction

NIEM, formerly known as the "National Information Exchange Model," is a framework for exchanging information among public and private
sector organizations. The framework includes a reference data model for objects, properties, and relationships; and a set of technical
specifications for using and extending the data model in information exchanges. The NIEM framework supports developer-level specifications
of data that form a contract between developers. The data being specified is called a message in NIEM. While a message is usually something
passed between applications, NIEM works equally well to specify an information resource published on the web, or an input or output for a web
service or remote procedure -- basically, any package of data that crosses a system or organization boundary.

NIEM promotes scalability and reusability of messages between information systems, allowing organizations to share data and information
more efficiently. It was launched in 2005 in response to the U.S. Homeland Security Presidential Directives to improve information sharing
between agencies following 9/11. Until 2023, NIEM was updated and maintained in a collaboration between the U.S. federal government, state
and local government agencies, private sector, and non-profit and international organizations, with new versions released around once per
year. NIEM defines a set of technical specifications, plus a set of common objects -- the NIEM Core, and 17 sets of objects that are specific to
certain government or industry verticals, the NIEM Domains.

In 2023, NIEM became the NIEMOpen OASIS Open Project. NIEMOpen welcomes participation by anyone irrespective of affiliation with
OASIS. Substantive contributions to NIEMOpen and feedback are invited from all parties, following the OASIS rules and the usual conventions
for participation in GitHub public repository projects.

NIEMOpen is the term generally used when referring to the organization such as Project Governing Board (PGB), NIEMOpen Technical
Architecture Committee (NTAC), NIEMOpen Business Architecture Committee (NBAC), organization activities or processes. NIEM is the term
used when directly referring to the model i.e. NIEM Domain, NIEM Model version.

This document specifies principles and enforceable rules for NIEM data components and schemas. Schemas and components that obey the
rules set forth here are conformant to specific conformance targets. Conformance targets may include more than the level of conformance
defined by this NDR, and may include specific patterns of use, additional quality criteria, and requirements to reuse NIEM release schemas.

1.1 Glossary

1.1.1 Definitions of terms

Term Definition

Absolute URI A Uniform Resource Identifier (URI) with scheme, hierarchical part, and optional query, but without a fragment; a URI
matching the grammar syntax <absoluteURI> as defined by [RFC 3986].

Adapter class A class that contains only properties from a single external namespace. (see §4.4)

An XSD type definition that encapsulates external components for use within NIEM; the XSD representation of an -adapter

A
dapter type class:. (see §9.4)
Appinfo A namespace defined by a schema document that provides additional semantics for components in the XSD
namespace representation of a model. (see §9.7)
élzssc')smatlon A class that represents a specific relationship between objects. (see §4.4)
@spzomanon A type definition representing an association class in XSD
Attri
prt(t;[')beﬁ; A data property represented in XSD as an attribute declaration. (see §4.9)

The means by which a designer of one namespace adds properties to a class defined in a different namespace. (see §3.7,

Augmentation
§4.16)

Augmentation

element An element in an XML message that is a container for one or more augmentation properties. (see §4.16.2.2)

Augmentation An abstract element declaration that provides a place for augmentation properties within the XSD representation of an
point element | augmented class. (see §4.16.2.2)

Augmentation
property A property added by one namespace to an augmented class in another namespace. (see §4.16.2.2)

fCopyright © OASIS Open 2025. All Rights Reserved. f{formatted_date} - Page 7 of 114

https://docs.oasis-open.org/niemopen/niem-model/v6.0/niem-model-v6.0.html

Term Definition

Augmentation
type

An XSD type definition for an -augmentation element-. (see §4.16.2.2)

document set

g;g;nented A class to which a property is added through augmentation. (see §4.16.2.2)

Cardinality The number of times a property may/must appear in an object.

Class A definition of an entity in a model; that is, a real-world object, concept, or thing. (see §3.4, §4.4)

Code list A set of string values, each having a known meaning beyond its value, each representing a distinct conceptual entity. (see
§4.13)

Code list A datatype in which each valid value is also a string i de list 4.13

datatype atatype in which each valid value is also a string in a -code list-. (see §4.13)

Conforming A namespace that satisfies all of the applicable rules in this document; a -reference namespace-, -extension namespace:-,

namespace or -subset namespace-. (see §6.1)

Conforming

schema A -schema document- that satisfies all of the applicable rules in this document. (see §6.1)

document

Conforming

schema A -schema document set- that satisfies all of the applicable rules in this document. (see §6.17)

Data definition

A text definition of a component, describing what the component means.

Data property Defines a relationship between an object and a literal value.

Datatype Defines the allowed values of a corresponding literal value in a message.

Documented A CMF object or XSD schema component that has an associated data definition.

component

Element An object property, or a data property that is not an -attribute property-; represented in XSD by an element declaration.
property (see §4.9)

Extension A namespace defining components that are intended for reuse, but within a more narrow scope than those defined in a
namespace -reference namespace:. (see §3.6)

Extension

schema A -schema document- that is the XSD representation of an-extension namespace-.

document

Extgrnal An attribute declaration in -external schema document-.

attribute

External)

component A component defined by an-external schema document-. (see §9.4)

External Any namespace defined by a -schema document-: that is not a conforming namespace, the -structures namespace:, or the
namespace XML namespace http://www.w3.0rg/XML/1998/namespace . (see §3.6)

External

schema A schema document that defines an external namespace. (see §3.6)

document

Literal class A class that contains no object properties, one or more attribute properties, and exactly one element property. (see §4.4)

Literal property

The element property in a-literal class-.

Local term

A word, phrase, acronym, or other string of characters that is used in the name of a namespace component, but that is not
defined in OED, or that has a non-OED definition in this namespace, or has a word sense that is in some way unclear.
(see §4.17)

fCopyright © OASIS Open 2025. All Rights Reserved.

f{formatted_date} - Page 8 of 114

Term Definition

A package of data shared at runtime; a sequence of bits that convey information to be exchanged or shared; an instance

M
essage of a -message type-. (see §3.1.1)
Message A person who creates a-message type- and -message format- from an information requirement, so that an instance
designer ‘message- at runtime will contain all the facts that need to be conveyed.
Message A person who writes software to implement a message specification, producing or processing-messages- that conform to
developer the -message format-.
Message T .
format A specification of the valid syntax of -messages- that conform to a -message type-. (see §3.1.2)
Message A data model intended to precisely define the mandatory and optional content of -messages- and the meaning of that
model content. (see §3.1.3)
gﬂbel?zi?ge The initial object in a message; the value of the message property.
Message - R
property The initial property of a message type. *(See §3.1.3)
Message A collection of related formats and t 3.1.4
specification collection of related message formats and message types. (see §3.1.4)
Message type | A specification of the information content of -messages-. (see §3.1.3)
Model file The CMF representation of a NIEM model; a -message- that conforms to the CMF -message type-. (see §3.5, §6.1)
Namespace A collection of uniquely-named components, managed by an authoritative source. (see §3.6)
NCName A non-colonized name, matching the grammar syntax <NCName> as defined by [XML Namespaces].
Object class Represents a class of objects defined by a NIEM model. (see §4.4)

Object property

Defines a relationship between a parent object and a child object.

Object type A type definition representing an object class in XSD
Proxy tvoe An XSD complex type definition with simple content that extends one of the simple types in the XML Schema namespace
yiyp with structures:SimpleObjectAttributeGroup . (see §9.5)
Relationship)))) . . .
property A property that provides information about the relationship between its parent and grandparent objects. (see §4.6, §5.5)
Reference
attribute An -attribute property- that contains a reference to an object in a message. (see §4.9)
property
Reference A taini ts that are intended for the widest possibl 3.6
namespace namespace containing components that are intended for the widest possible reuse. (see §3.6)
Reference
schema The XSD representation of a-reference namespace-. (see §3.6, §9.8)
document
A data model entirely comprised of reference namespaces and extension namespaces; a model intended to make the
Reuse model L . :
agreed definitions of a community available for reuse.
An artifact that can be used to assess the validity of a message; in XML Schema for XML messages, JSON Schema for
Schema
JSON messages. (see §3.1.2)
Schema

document set

A collection of -schema documents- that together are capable of validating an XML document. (see §70.2)

Serialization

(Verb) A process of converting a data structure into a sequence of bits that can be stored or transferred.
(Noun) A standard for the output of serialization; for example, XML and JSON.

fCopyright © OASIS Open 2025. All Rights Reserved.

f{formatted_date} - Page 9 of 114

Term

Definition

Structures . .)

namespace A namespace that provides base types and attributes for the XSD representation of NIEM models. (see §3.6)

Subset A subset of th ts in a ref tensi 2.6

namespace subset of the components in a reference or extension namespace. (see §3.6)

Subset rule Any data that is valid for a -subset namespace- must also be valid for its-reference namespace:- or -extension namespace-,

and must have the same meaning. (see §8.4)

Subset schema
document

A -schema document: for a -subset namespace:. (see §9.10)

Terms imported

Term

from Extensible Markup Language (XML) 1.0 (Fourth Edition) [XML]:

Definition

Document element An element, no part of which appears in the content of another element; preferred synonym for root element.

XML document

A data object is an XML document if it is well-formed, as defined in this specification. (Section 2, Documents)

Terms imported

from XML Information Set (Second Edition) [XML Infoset]:

Term Definition
Attribute An attribute information item, as defined by Section 2.3: Attribute Information Items.
Element An element information item, as defined by Section 2.2, Element Information Iltems.

Terms imported

from [XML Schema Structures]:

Term Definition
Attri
d(tat(r:llerJ::i on As defined by Section 2.2.2.3, Attribute Declaration.
Base type A type definition used as the basis f tensi tricti Section 2.2.1.1, Type Definition Hierarch
definition ype definition used as the basis for an extension or restriction. (see Section 2.2.1.1, Type Definition Hierarchy)
| ' , L
g;?:]ﬁig)r(] type As defined by Section 2.2.1.3, Complex Type Definition*.
ii?:;:i on As defined by Section 2.2.2.1, Element Declaration.
Schema The generic term for the building blocks that comprise the abstract data model of the schema. (see Section 2.2, XML
component Schema Abstract Data Model)
Schema As defined by Section 3.1.2, XML Representations of Components, which states, "A document in this form (i.e. a element
document information item) is a schema document.”
(?;?Elﬁ otr>1/ pe As defined by Section 2.2.1.2, Simple Type Definition.
Valid As defined by Section 2.1, Overview of XML Schema, which states, "The word valid and its derivatives are used to refer
to clause 1 above, the determination of local schema-validity."
XML Schema A set of schema components. (see Section 2.2, XML Schema Abstract Data Model)
XML Schema As defined by Abstract, which states, "XML Schema: Structures specifies the XML Schema definition language, which
definition offers facilities for describing the structure and constraining the contents of XML 1.0 documents, including those which
language (XSD) | exploit the XML Namespace facility."

Terms imported

from NIEM Conformance Targets Attribute Specification [CTAS-v3.0]:

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 10 of 114

https://www.w3.org/TR/2008/REC-xml-20081126/#dt-xml-doc
http://www.w3.org/TR/2004/REC-xml-infoset-20040204/#infoitem.element
http://www.w3.org/TR/2004/REC-xml-infoset-20040204/#infoitem.element
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/#Attribute_Declaration
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/#key-baseTypeDefinition
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/#Complex_Type_Definition
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/#Element_Declaration
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/#key-component
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/#key-schemaDoc
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/#Simple_Type_Definition
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/#key-vn
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/#key-component
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/#abstract

Term Definition

Conformance | A class of artifact, such as an interface, protocol, document, platform, process or service, that is the subject of conformance
target clauses and normative statements. (see §6.1)

Conformance

target An internationalized resource identifier (IRI) that uniquely identifies a conformance target.

identifier

E;fr?f(g;\é?ance The first occurrence of the attribute

t t {https://docs.oasis-open.org/niemopen/ns/specification/conformanceTargets/6.0/}conformanceTargets,
argets in document order.

attribute

Effective

conformance)) . . " . , . .

target An internationalized resource identifier reference that occurs in the document's effective conformance targets attribute.
identifier

1.1.2 Acronyms and abbreviations

Term Literal

APPINFO Application Information

CCC Complex type with Complex Content

CMF Common Model Format

CSC Complex type with Simple Content

Csv Comma Separated Values

CTAS Conformance Targets Attribute Specification
ID Identifier

IEP Information Exchange Package

IEPD Information Exchange Package Documentation
ISO International Organization for Standardization
JSON JavaScript Object Notation

JSON-LD JavaScript Object Notation Linked Data
NBAC NIEMOpen Business Architecture Committee
NS Namespace

NTAC NIEMOpen Technical Architecture Committee
OED Oxford English Dictionary

OP Open Project

OWL Web Ontology Language

PGB Project Governing Board

QName Qualified Name

RDF Resource Description Framework

RDFS Resource Description Framework Schema
RFC Request For Comments

UML Unified Modeling Language

fCopyright © OASIS Open 2025. All Rights Reserved.

f{fformatted_date} - Page 11 of 114

Term Literal

URI Uniform Resource Identifier
URL Uniform Resource Locator
URN Uniform Resource Name
XML Extensible Markup Language
XSD XML Schema Definition

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 12 of 114

2. How To Read This Document

This document provides normative specifications for NIEM-conforming data models. It also describes the goals and principles behind those
specifications. It includes examples and explanations to help users of NIEM understand the goals, principles, and specifications.

This document is not intended as a user guide. Training materials for message designers and developers will be available at

https://www.niemopen.org.

The relevant sections of this document will depend on the role of the user. Figure 2-1 illustrates the relationships between these roles and

NIEM activities.

abstract

Information requirement

abstract

producer (the facts that must be conveyed consumer
- | ¥
- ! \‘5
_.-"defines s defines .
f - » s i
. 'i - .. Subject
Business < | hL Message .
I Designer - Matter
Analyst l\w" i 9 ‘a/l Expert
creafes |
|
Message d M
Developgers undersT ess:ge ______ Ynderstaney Message
- e typ “=--.. , Developers
e .
LT ’ L1}
. i 1 -
i - : specifies | implemen fr" i
' _interface Message ;
System / - XML, System /
Application ., JSON, Application

Producers

etc.)

Figure 2-1: User roles and activities

The user roles in the above figure are:

Consumers

o Business analysts and subject matter experts, who provide the requirements for information transfer. These requirements might describe
an information resource available to all comers. They could describe an information exchange as part of a business process. They need

not be tied to known producers and consumers.

+ Message designers, who express those requirements as a -message type:, which specifies the syntax and semantics of the data that will

convey the required information at runtime.

+ Message developers, who write software to construct messages that contain the required information and follows the defined syntax, and

who write software to parse and process such messages.

The remaining sections of this document most relevant to each of these roles are shown in the following table:

Section Manager Business Analyst Message Designer Message Developer
3. Overview of NIEM technical architecture X X X X

4. Data models in NIEM X

5. Data modeling patterns X

6. Conformance X X X

7. Rules for model components X X

8. Rules for namespaces X X

9. Rules for schema documents X

10. Rules for models X

11. Rules for message types and message formats X X

fCopyright © OASIS Open 2025. All Rights Reserved.

f{fformatted_date} - Page 13 of 114

https://www.niemopen.org

Section Manager Business Analyst Message Designer Message Developer

12. Rules for XML messages X X
13. Rules for JSON messages X X
14. RDF interpretation of NIEM models and messages X

Table 2-2: Relevant document sections by user role

2.1 Document references

This document relies on references to many outside documents. Such references are noted by bold, bracketed inline terms. For example, a
reference to RFC 3986 is shown as [RFC 3986]. All reference documents are recorded inAppendix A, References, below.

2.2 Defined terms

Terms defined in the glossary appear in the body of this document as a hover-reveal link to the glossary definition; for example, model file.
Glossary terms that appear within a conformance rule appear as a dot-link; for example, -message type-.

2.3 Typographic conventions

Code examples appear in shaded, separate boxes with a fixed-width font. Code examples may contain ellipses, may have truncated lines, and
may omit closing tags and braces; for example:

<msg:Request {

xmlns:nc="https://docs.oasis-open.org/niemopen/ns/model/niem "@context": {

xmlns:msg="http://example.com/ReqRes/1.0/"> "nc": "https://docs.oasis-open.org/niemopen/ns/model/niem-core/6.0/"
<msg:RequestID>RQOO1</msg:RequestID> "msg": "http://example.com/ReqRes/1.0/"
<msg:RequestedItem> 3,

<nc:ItemQuantity>10</nc:ItemQuantity> "'msg:RequestID" : "RQOO1"
</msg:RequestedItem> "'msg:RequestedItem": {
</msg:Request> "nc:ItemName": "Wrench",

|
|
|
|
|
<nc:ItemName>Wrench</nc:ItemName> | "msg:Request": {
|
|
|
|

"nc:ItemQuantity": 10

Example 2-3: Code example with truncated line and omitted closing braces

Data values, component names, keywords, and literal XML text appear in shaded monospace font; for example, nc:PersonType .

2.4 Clark notation and qualified names
This document uses both Clark notation and QName notation to represent qualified names.

QName notation is defined by [XML Namespaces] Section 4, Qualified Names. A QName for the XML Schema string datatype is xs:string.
Namespace prefixes used within this specification are listed in Section 2.3, Use of namespaces and namespace prefixes, below.

This document sometimes uses Clark notation to represent qualified names in normative text. Clark notation is described by [ClarkNS], and
provides the information in a QName without the need to first define a namespace prefix, and then to reference that namespace prefix. A Clark
notation representation for the qualified name for the XML Schema string datatype is {http://www.w3.0rg/2001/XMLSchema}string .

Each Clark notation value usually consists of a namespace URI surrounded by curly braces, concatenated with a local name. The exception to
this is when Clark notation is used to represent the qualified name for an attribute with no namespace, which is ambiguous when represented
using QName notation. For example, the element targetNamespace, which has no [namespace name] property, is represented in Clark
notation as {}targetNamespace .

2.5 Use of namespaces and namespace prefixes

The following namespace prefixes are used consistently within this specification. These prefixes are not normative; this document issues no
requirement that these prefixes be used in any conformant artifact. Although there is no requirement for a schema or XML document to use a
particular namespace prefix, the following namespace prefixes have a fixed meaning in this document.

e« xs and xsd : The namespace for the XML Schema definition language as defined by [XML Schema Structures] and
[XML Schema Datatypes], http://www.w3.0rg/2001/XMLSchema .

¢ xsi:The XML Schema instance namespace, defined by [XML Schema Structures]), Section 2.6, Schema-Related Markup in
Documents Being Validated, for use in XML documents, http://www.w3.0rg/2001/XMLSchema-instance .

e ct : The namespace defined by Conformance Targets Attribute Specification ([CTAS]),
https://docs.oasis-open.org/niemopen/ns/specification/conformanceTargets/6.0/ .

¢ appinfo : The appinfo namespace, https://docs.oasis-open.org/niemopen/ns/model/appinfo/6.0/ .

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 14 of 114

e structures : The structures namespace, https://docs.oasis-open.org/niemopen/ns/model/structures/6.0/ .

« cmf : The namespace for the CMF model representation,
https://docs.oasis-open.org/niemopen/ns/specification/cmf/1.0/ .

e nc : The namespace of the NIEM Core model, https://docs.oasis-open.org/niemopen/ns/model/niem-core/6.0/ .

o rdf : The namespace for the Resource Description Framework, http://www.w3.0rg/1999/02/22-rdf-syntax-ns# .

¢ rdfs : The namespace for RDF Schema, http://www.w3.0rg/2000/01/rdf-schema# .

¢ owl : The namespace for OWL 2 Web Ontology Language, http://www.w3.0rg/2002/07/0wl# .

XML Schema examples in this document presume namespace declarations for all of the above; for example,
xmlns:xs="http://www.w3.0rg/2001/XMLSchema" .

RDF examples in Turtle syntax presume prefix declarations for the above; for example,
@prefix xs: <http://www.w3.0rg/2001/XMLSchema> .

JSON-LD examples presume @context entries; for example, "@context": { "xs":, "http://www.w3.0rg/2001/XMLSchema" }

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 15 of 114

3. Overview of the NIEM Technical Architecture
This overview describes NIEM's design goals and principles, and introduces key features of the architecture. The major design goals are:

o Shared understanding of data. NIEM helps developers working on different systems to understand the data their systems share with each
other. NIEM also helps data analysts understand and integrate data from multiple sources.

« Reuse of community-agreed data definitions. NIEM reduces the cost of data interoperability by promoting shared data definitions —
without requiring a single data model of everything for everyone.

o Open standards with free-and-open-source developer tools. NIEM does not depend on proprietary standards or the use of expensive
developer tools.

The key architecture features mentioned in this section:
o The NIEM metamodel — an abstract, technology-neutral data model for NIEM data models

« Two equivalent model representations — One is a profile of XML Schema (XSD) that has been used in every version of NIEM. The other
is itself a NIEM-based data specification, suitable for XML and many other data technologies.

« Model namespaces — for model configuration management by multiple authors working independently.

3.1 Machine-to-machine data specifications

NIEM is a framework for developer-level specifications of data. A NIEM-based data specification — which is built using NIEM and in
conformance to NIEM, but is not itself apart of NIEM — describes data in detail sufficient to the developers of producing and consuming
systems. This data may be shared via:

« a message passed between applications
¢ an information resource published on the web
« an API for a system or service

NIEM is potentially useful for any data sharing mechanism that transfers data across a system or organization boundary. (Within a system,
NIEM may also be useful when data passes between system components belonging to different developer teams.)

The primary purpose of a NIEM-based data specification is to establish a common understanding among developers, so that they can write
software that correctly handles the shared data, hence "machine-to-machine". (NIEM-conforming data may also be directly presented to human
consumers, and NIEM can help these consumers understand what they see.)

Data sharing in NIEM is implemented in terms of messages, message formats, and message types. These are illustrated in figure 3-1.

« -message- — a package of data shared at runtime; an instance of a -message format- and of a-message type-
« -message format- — a definition of a syntax for the messages of a-message type-
* -message type- — a definition of the information content in equivalent message formats

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 16 of 114

Information requirement

o
*
I Message
Designer
Message type
Message
format ——
":{C::?r‘.‘..
Message N Message
Developers .

. Developers

’

-
*,)) [
h s, specifies 1 . ;'h
" ; implement s

.___._.interface essage -
: ML, l System /
JSON, Application
etc)
Producers Consumers

Figure 3-1: Message types, message formats, and messages

A message designer turns information requirements into a-message type-, then turns a-message type- into one or more message formats.
Message developers then use the -message type- and -message format: to understand how to implement software that produces or consumes
conforming messages.

3.1.1 Messages

In NIEM terms, the package of data shared at runtime is emessage-. This data is arranged according to a supported serialization; for example,
XML or JSON. The result is a sequence of bits that represents the information content of the message. Example 3-2 shows two messages
representing the same information, one serialized in XML, the other in JSON. Each message in this example is a request for a quantity of some
item. (In all examples, closing tags and brackets may be omitted, long lines may be truncated, and some portions omitted and/or replaced with
ellipses (...).)

}

<msg:Request | {
xmlns:nc="https://docs.oasis-open.org/niemopen/ns/model/niem | "@context": {
xmlns:msg="http://example.com/ReqRes/1.0/"> | "nc": "https://docs.oasis-open.org/niemopen/ns/model/niem-
<msg:RequestID>RQOO1</msg:RequestID> | "msg": "http://example.com/ReqRes/1.0/"
<msg:RequestedItem> | 3,
<nc:ItemName>Wrench</nc:ItemName> | "'msg:Request": {
<nc:ItemQuantity>10</nc:ItemQuantity> | "msg:RequestID" : "RQOO1"
</msg:RequestedItem> | "'msg:RequestedItem": {
</msg:Request> | "nc:ItemName": "Wrench"
| "nc:ItemQuantity": 10
| }
|
|

}

Example 3-2: Messages in XML and JSON syntax

The data structure of a NIEM message appears to be a tree with a root node. It is actually a directed graph with an initial node called the
message object. For example, the message object in example 3-2is the msg:Request element in the XML message. In the JSON message it
is the value for the msg:Request key.

Every NIEM serialization has a mechanism for references; that is, a way for one object in the serialized graph to point to an object elsewhere in
the graph. This mechanism supports cycles and avoids duplication in the graph data structure. (See §14.2.3)

Every -message: is an instance of a -message format-. A conforming message must satisfy the rules insection 12 and section 13. In particular,
it must be valid according to the -schema- of its -message format-.

A NIEM message was originally known as aninformation exchange package (IEP), a term that found its way into the U.S.
Federal Enterprise Architecture (2005). A message specification was originally known as an information exchange package
documentation (IEPD). These terms are in widespread use within the NIEM community today, and will not go away soon (if
ever).

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 17 of 114

3.1.2 Message format

A -message format- specifies the syntax of valid messages. This provides message developers with an exact description of the messages to be
generated or processed by their software.

A -message format- includes a -schema: that can be used to assess the validity of a -message-. This -schema: is expressed in XML Schema
(XSD) for XML message formats, and JSON Schema for JSON message formats. Example 3-3 shows a portion of the schemas for the two
example messages in example 3-2.

<xs:complexType name='"RequestType'> | {
<xs:sequence> | "msg:RequestType": {
<xs:element ref="msg:RequestID"/> | "type": "object",
<xs:element ref="msg:RequestedItem"/> | "properties": {
</Xxs:sequence> | "msg:RequestID": {"$ref": "#/properties/msg:RequestID"}
</xs:complexType> | "msg:RequestedItem": {"$ref": "#/properties/msg:RequestedItem"}
<xs:element name="Request" type="msg:RequestType"/> | T,
| "required": [
| "'msg:RequestID"
| "msg:RequestedItem"
|]
[
| "msg:Request": {
| "$ref": "#/definitions/msg:RequestType"
(-
|3

Example 3-3: Example message format schemas

Producing and consuming systems may use the message format schema to validate the syntax of messages at runtime, but are not obligated
to do so. Message developers may use the schema during development for software testing. The schemas may also be used by developers for
data binding; for example, Java Architecture for XML Binding (JAXB).

A -message format- belongs to exactly one -message type:-. A conforming -message format- must satisfy the rules insection 11; in particular, it
must be constructed so that every -message- that is valid according to the format also satisfies the information content constraints of its
-message type-.

3.1.3 Message type

One important feature of NIEM is that every-message- has an equivalent -message- in every other supported serialization. These equivalent
messages have a different -message format:, but have the same-message type:. For example, the XML message and the JSON message in
example 3-2 above are equivalent. They represent the same information content, and can be converted one to the other without loss of
information.

A -message type- specifies the information content of its messages without prescribing their syntax. A -message type- includes a -message
model-, which is the means through which the message designer precisely defines the mandatory and optional content of conforming
messages and the meaning of that content. This model is expressed in either of NIEM's two model representations, which are described in
section 3.4 and section 3.5, and fully defined in section 4. Example 3-4 shows a portion of the message model for the two message formats in
example 3-3.

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 18 of 114

<xs:complexType name="ItemType" appinfo:referenceCode="NONE"> |
<xs:annotation> |
<xs:documentation>A data type for an article or thing. |
</xs:annotation>
<xs:complexContent>
<xs:extension base="structures:0ObjectType'">
<Xs:sequence> |
<xs:element ref="nc:ItemName"/>
<xs:element ref="nc:ItemQuantity"/>
</xs:sequence> |
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:element name="ItemName" type='"nc:TextType">
<xs:annotation> |
<xs:documentation>A name of an item.</xs:documentation> |
</xs:annotation>
</xs:element>
<xs:element name="RequestedItem" type='"nc:ItemType">
<xs:annotation> |
<xs:documentation>A specification of an item request.</xs |
</xs:annotation>
</xs:element>
|
|
|
|
|
|

<Class structures:id="nc.ItemType'">
<Name>ItemType</Name>
<Namespace structures:ref="nc" xsi:nil="true"/>
<DocumentationText>A data type for an article or th
<ReferenceCode>NONE</ReferenceCode>
<ChildPropertyAssociation>
<DataProperty structures:ref="nc.ItemName" xsi:nil="true"/>
<MinOccursQuantity>1</MinOccursQuantity>
<MaxOccursQuantity>1</MaxOccursQuantity>
</ChildPropertyAssociation>
<ChildPropertyAssociation>
<DataProperty structures:ref="nc.ItemQuantity"
<MinOccursQuantity>1</MinOccursQuantity>
<MaxOccursQuantity>1</MaxOccursQuantity>
</ChildPropertyAssociation>
</Class>
<DataProperty structures:id="nc.ItemName">
<Name>ItemName</Name>
<Namespace structures:ref="nc" xsi:nil="true"/>
<DocumentationText>A name of an item.
<Datatype structures:ref="nc.TextType" xsi:nil="true"/>
</DataProperty>
<ObjectProperty structures:id="msg.RequestedItem">
<Name>RequestedItem</Name>
<Namespace structures:ref="msg" xsi:nil="true"/>
<DocumentationText>A specification of an item
<Class structures:ref="nc.ItemType" xsi:nil="true"/>
<ReferenceCode>NONE</ReferenceCode>
</0ObjectProperty>

Example 3-4: Example message model in XSD and CMF

In addition to the-message model-, a -message type- also declares the initial property of conforming messages. In a conforming message, the
message object is always the value of the initial property; this is the message property. For example, the -message type- for the -message- in
example 3-2 declares that the initial property is msg:Request .

A -message type- provides all of the information needed to generate the schema for each -message format- it specifies. NIEMOpen provides
free and open-source software tools to generate these schemas from the message model; see [NIEM-Tools]. (Message designers may also
compose these schemas by hand, if desired.)

A conforming -message type- must satisfy all of the rules in section 11.

3.1.4 Message specification

A message specification is a collection of related message types. For instance, a Request message type might be paired with a Response
message type as part of a request/response protocol. Those two message types could be collected into a message specification for the
protocol, as illustrated below in example 3-5.

message specification messages
message type 2 message format y <my :Reque st
f:r{’tn:nst Si’::: xmlns:msg="http://example. com/}
Request [of = Request. XML yof | xmins:nc="https://docs.oasis-of .
<msg :RequestID>RO001</msg:Reqy S
k. A morsDamnaotad Tram same
information
message format defi { g
efines "RBcontext™: "http://example.coq :;
Request.JSON syntax —p| "mag:Request™: | -
of "msg:RequestID™: "RQO01"™,
k y Moo D tadT+am™s. I
message type) T o X <msg :Response
defines Ol defines Amlns:msg="http://example.com/y
Response [content —p Response.XML synta —| ymins:nc="https://docs.oasis—of | .
of of <mag :RequestID>RO001</mag:Req ™
. / wom-Damnoetrad Tram same
information
message format defi {“ o P
erines Bcontext™: "http://example.coy .~
Response.]SON syntax —»| rpag:Response”: { b
of "msg:RequestID": "RQO01"™,
k. y Moo D tadT+am™s. I

Example 3-5: Message specifications, types, and formats

Summary:

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 19 of 114

« A message specification defines one or more message types; a-message type- belongs to one message specification
« A -message type- defines one or more message formats; a -message format- belongs to one -message type-

« A -message format: defines the syntax of valid-messages-

« A -message type- defines the semantics of valid messages, plus their mandatory and optional content

« A -message:- is an instance of a -message format- and of that format's -message type-

3.2 Reuse of community-agreed data models

NIEM is also a framework allowing communities to createreuse models for concepts that are useful in multiple data specifications. These
community models are typically not complete for any particular specification. Instead, they reflect the community's judgement on which
definitions are worth the trouble of agreement The NIEM core model contains definitions found useful by the NIEM community as a whole.
NIEM domain models reuse the core, extending it with definitions found useful by the domain community. The core model plus the domain
models comprise the "NIEM model". Figure 3-6 below illustrates the relationships between domain communities and community models.

Domain communities: Business architecture committee (NBAC):
analysts, SMEs, developers NIEM data model representatives from all communities,
with shared subject interests creatinga common core

design design

Figure 3-6: NIEM communities and data models

Message designers reuse definitions from the NIEM model, selecting a (usually small) subset of definitions that express a part of their
information requirement. Message designers then create model extensions, adding components that do not yet exist in the NIEM model. These
local extensions could be useful to others in the community beyond the scope of the original message, and may be submitted for potential
adoption into the NIEM model (see https://github.com/niemopen/niem-model/issues).

NIEM's policy of easy model extension supports easy reuse of community data models. Because a community model does not need to be
complete for the union of all needs, each community may focus its effort on its common needs, where the effort of agreement has the highest
value. Data definitions that are not common, that are needed only for a particular message appear only as extensions in that message type,
and need be learned only by the message developers who implement it. Model extensions are further described in section 3.7.

Data model reuse is especially useful in a large enterprise. Its value grows with the number of developer teams, and with the degree of
commonality in the shared data. NIEM was originally designed for data sharing among federal, state, and local governments — where
commonality and number of developer teams is large indeed.

3.3 Reuse of open standards
NIEM is built on a foundation of open standards, primarily:

o« XML and XSD — message serialization and validation; also a modeling formalism
¢ JSON and JSON-LD — message serialization and linked data

* JSON Schema — message validation

« RDF, RDFS, and OWL — formal semantics

« ISO 11179 — conventions for data element names and documentation

One of NIEM's principles is to reuse well-known information technology standards when these are supported by free and open-source software.
NIEM avoids reuse of standards that effectively depend on proprietary software. When the NIEMOpen project defines a standard of its own, it
also provides free and open-source software to support it.

3.4 The NIEM metamodel

A data model in NIEM is either a-message model-, defining the information content of a-message type-, or areuse model, making the agreed
definitions of a community available for reuse. The information required for those purposes can itself be modeled. The model of that information

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 20 of 114

https://github.com/niemopen/niem-model/issues

is the NIEM metamodel -- an abstract model for NIEM data models. The metamodel is expressed in UML, and is described in detail in section
4. At a high level, the major components of the metamodel are properties, classes, datatypes, namespaces, and models. Figure 3-7 provides
an illustration.

Model

Component 7 1 Namespace

namespace =
0 1

N \

Property

“?‘?| “%‘F‘

Datatype Class ObjectProprety DataProperty
= class
1 0.*
1 - datatype 0.

Figure 3-7: High-level view of the NIEM metamodel

« A property is a concept, idea, or thing. It defines a field that may appear in a -message- and can contain subfields (for objects and object
properties) or a value (for literals and data properties). For example, in example 3-4, req:RequestedItem and nc:ItemName are
names of properties. req:RequestedItem is an object property for the requested item; nc:ItemName is a data property for the name
of the item. The meaning of these properties is captured in the documentation text.

o A class defines the properties that may appear in the content of a corresponding object in a-message-. A class has one or more
properties. An object property in a class defines a subject-property-value relationship between two objects. A data property defines a
relationship between an object and a literal value. In example 3-4, nc:ItemType is the name of a class.

« A datatype defines the allowed values of a corresponding literal value in a-message-. Inexample 3-4, nc:TextType is the name of a
datatype.

« Classes and datatypes are the two kinds of type in the metamodel. For historical reasons, the name of every class and datatype in the
NIEM model ends in "Type". That is why this high-level view of the metamodel includes the abstract Type UML class.

« Classes, datatypes, and properties are the three kinds of metamodel component. (All of the common properties of classes and datatypes
are defined in the Component class, which is why the abstract Type class is not needed in the detailed metamodel diagram in section 4.)

« A namespace is a collection of uniquely-named components defined by an authority. (See section 3.6)
« A model is a collection of components (organized into namespaces) and their relationships.

Figure 3-8 below illustrates the relationships among metamodel components, NIEM model components, and the corresponding -message-
objects and values.

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 21 of 114

_. specified-by _ _ .- instance-of .__

s "u "u
Message Message
— Metamodel
(runtime instance data) model
has -a

has-a

defined-by Ob}ect
is-a
msg: r'equ estedItem nc: requestedltem — Prup-erb,r
Jtem
ob;ect clte mTvpe Class
as-a
has-a

‘ Data
nc :ITtemlame dEmed by nc ItemName

l Prop-ert\.r
figerat is-a xs:string is-o —m| Datatype
Wrench

Figure 3-8: Message, message model, and metamodel relationships

A NIEM -message- contains properties which are based on objects or literal values. These are specified by the class, property, and datatype
objects in a NIEM -message model-, which defines the content of a conforming-message- and also defines the meaning of that content. For
example, in figure 3-8, the item object is defined by the nc:ItemType Class object; the literal value (Wrench) is defined by the xs:string
Datatype object, and the property relationship between the two is defined by the nc:ItemName DataProperty object.

Note that the term object is used in the context of messages and models. Within a NIEM -message-, an object is the value of a property,
representing facts at runtime. A message object has a class. In example 3-2, the msg:RequestedItem XML element is an object, as is the
value of the JSON key with the same name. These objects are instances of the nc:ItemType class.

Within a NIEM model, an object is an instance of a metamodel Class, Datatype, or Property. In example 3-3, nc:ItemType is a Class object
represented by the complex type definition in XSD, or by the Class element in CMF.

3.5 NIEM model representations: XSD and CMF

The abstract metamodel has two concrete representations: NIEM XSD and NIEM CMF. These are equivalent representations and may be
converted from one to the other without loss. (NIEMOpen provides free and open-source software tools that perform the conversion; see
https://github.com/niemopen/ntac-admin/tree/main/tools.)

Every version of NIEM has used a profile of XML Schema (XSD) as a NIEM model representation. In XSD, a NIEM model is represented as a
-schema- assembled from a collection of -schema documents-. Every aspect of the metamodel is represented in some way by a schema
component.

XSD as a model representation directly supports conformance testing of NIEM XML messages through schema validation. However, JSON
developers (and developers working with other formats) cannot use XSD to validate their messages. Nor do they want to read XSD
specifications of message content. For this reason, NIEM 6 introduces the Common Model Format (CMF), which is a NIEM model
representation intended to support all developers.

CMF is the result of applying the NIEM framework to the information requirements in the metamodel. That result is a NIEM-based -message
type-, which is part of amessage specification, which is published in [CMF]. In CMF, a model is represented as an instance of that -message
type-; that is, a CMF -message-, also known as a model file.
CMF is a technology-neutral model representation, because:
« A CMF model can be transformed into XSD for validation of XML messages, and into JSON Schema for validation of JSON messages.
« A CMF model can itself be represented in XML or JSON, according to developer preference. That is, like any other NIEM message, the

CMF representation of a model can be serialized in either XML or JSON. For example, example 3-9 shows a portion of the message
model from example 3-4 in both XML and JSON syntax.

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 22 of 114

https://github.com/niemopen/ntac-admin/tree/main/tools

<Class structures:id="nc.ItemType'">
<Name>ItemType</Name>
<Namespace structures:ref="nc" xsi:nil="true"/>
<DocumentationText>A data type for an article or thing.</Docum |
<ReferenceCode>NONE</ReferenceCode>
<ChildPropertyAssociation>
<DataProperty structures:ref="nc.ItemName" xsi:nil="true"/> |
<MinOccursQuantity>1</MinOccursQuantity> | "cmf:DataProperty": { "@id": "#nc.ItemName" }
<MaxOccursQuantity>1</MaxOccursQuantity> | "cmf:MinOccursQuantity": 1
</ChildPropertyAssociation> | "cmf:MaxOccursQuantity": 1
|
|
|
|
|
|
|
|

{
"cmf:Class": {
"cmf:Name": "ItemType",
"cmf:Namespace": { "@id": "#nc" },
"cmf:DocumentationText": "A data type for an article
"cmf:ReferenceCode": "NONE"
"cmf:PropertyAssociation": {

<ChildPropertyAssociation> 3,
<DataProperty structures:ref="nc.ItemQuantity" xsi:nil="true "cmf:PropertyAssociation": {
<MinOccursQuantity>1</MinOccursQuantity> "cmf:DataProperty": { "@id": "#nc.ItemQuantity" },
<MaxOccursQuantity>1</MaxOccursQuantity> "emf:MinOccursQuantity": 1,
</ChildPropertyAssociation> "cmf :MaxOccursQuantity": 1
</Class> 3
}
}

Example 3-9: CMF model in XML and JSON syntax
Section 4 defines the mappings between the metamodel, NIEM XSD, and CMF.

While NIEM uses JSON Schema to validate JSON messages, there is no JSON Schema representation of the metamodel,
because JSON Schema does not have all of the necessary features to represent NIEM models.

3.6 Namespaces

The components of a NIEM model are partitioned into namespaces. This prevents name clashes among communities or domains that have
different business perspectives, even when they choose identical data names to represent different data concepts.

Each namespace has an author, a person or organization that is the authoritative source for the namespace definitions. A namespace is the
collection of model components for concepts of interest to the namespace author. Namespace cohesion is important: a namespace should be
designed so that its components are consistent, may be used together, and may be updated at the same time.

Each namespace must be uniquely identified by a URI. The namespace author must also be the URI's owner, as defined by [webarch]. Both
URNs and URLs are allowed. It is helpful, but not required, for the namespace URI to be accessible, returning the definition of the namespace
content in a supported model format.

NIEM defines two categories of authoritative namespace:-reference namespace- and -extension namespace-.

o Reference namespace: The NIEM model is a reuse model comprised entirely of reference namespaces. The components in these
namespaces are intended for the widest possible reuse. They provide names and definitions for concepts, and relations among them.
These namespaces are characterized by "optionality and over-inclusiveness". That is, they define more concepts than needed for any
particular data exchange specification, without cardinality constraints, so it is easy to select the concepts that are needed and omit the
rest. They also omit unnecessary range or length constraints on property datatypes.

A -reference namespace:- is intended to capture the meaning of its components. It is not intended for a complete definition of any
particular -message type-. Message designers are expected to subset, profile, and extend the components in reference namespaces as
needed to match their information exchange requirements.

« Extension namespace: The components in an-extension namespace- are intended for reuse within a more narrow scope than those
defined in a -reference namespace-. These components express the additional vocabulary required for an information exchange, above
and beyond the vocabulary available from the NIEM model. The intended scope is often a particular message specification. Sometimes a
community or organization will define an -extension namespace- for components to be reused in several related message specifications.
In this case, the namespace components may also omit cardinality and datatype constraints, and may be incomplete for any particular
-message type-.

Message designers are encouraged to subset, profile, and extend the components in extension namespaces created by another author
when these satisfy their modeling needs, rather than create new components.

Namespaces are the units of model configuration management. Once published, the components in a -reference namespace- or -extension
namespace- may not be removed or changed in meaning. A change of that nature may only be made in a new namespace with a different URI.

As a result of this rule, once a specific version of a namespace is published, it can no longer be modified. Updates must go into a new version
of the namespace. All published versions of a namespace continue to be valid in support of older exchanges.

In addition, note that a message specification contains its own copy of the schemas that they depend upon. Therefore new versions of a model
or a namespace do not affect existing exchanges. Exchange partners may decide to upgrade to a new version of NIEM if they decide it suits
their needs, but only if they choose to do so, and only on their own timeline. The NIEM release schedule does not force adopters to keep in
sync.

Message designers almost never require all the components in the NIEM model, and so NIEM defines a third namespace category:

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 23 of 114

o Subset namespace: Technically, this is a "namespace subset", which contains only some of the components of a -reference namespace-
or -extension namespace:-. It provides components for reuse, while enabling message designers and developers to:

o Omit optional components in a-reference namespace- or -extension namespace:- that they do not need.
o Provide cardinality and datatype constraints that precisely define the content of one or more message types.

All message content that is valid for a subset namespace must also be valid for the -reference namespace- or -extension namespace- with
the same URI. Widening the value space of a component is not allowed. Adding components is not allowed. Changing the documentation
of a component is not allowed.

NIEM has a fourth namespace category, for namespaces containing components from standards or specifications that are based on XML but
not based on NIEM.

« External namespace: Any namespace defined by a-schema document- that is not:

o a-reference namespace:-

o an -extension namespace-

o a-subset namespace-

o the -structures namespace-, https://docs.oasis-open.org/niemopen/ns/model/structures/6.0/
o the XML namespace, http://www.w3.0rg/XML/1998/namespace .

XML attributes defined in anexternal namespace may be part of a NIEM model. XML elements defined in an external namespace are not
part of a NIEM model, but may be used as properties of an -adapter type- (see §9.4).

Three special namespaces do not fit into any of the four categories:

o The -structures namespace- is not part of any NIEM model. It provides base types and attributes that are used in the XSD representation
of NIEM models.

« The XML namespace is not considered to be anexternal namespace. It defines the xml:lang attribute, which may be a component in a
NIEM model.

e The XSD namespace (http://www.w3.0rg/2001/XMLSchema) defines the primitive datatypes (xs:string, etc.) This namespace
appears explicitly in CMF model representations, and is implicitly part of every XSD representation.

3.7 Model extensions

Reuse of a community data model typically supplies some but not all of the necessary data definitions. Model extension allows a model
designer to supply the missing definitions. NIEM has two forms of model extension: subclassing and augmentation.

In a subclass, a namespace designer creates a newclass in his own namespace to represent a special kind of thing. The new class shares all
of the properties of its parent class, and adds properties belonging only to the new class. For example, in the NIEM model, nc:Vehicle is a
subclass of nc:Conveyance . Like any Conveyance, a Vehicle may have the nc:ConveyanceEngineQuantity property, but only Vehicles
have the nc:VehicleSeatingQuantity property; other Conveyances do not.

In an augmentation, a namespace designer creates additional properties for a class that is defined in a different namespace. Here the designer
is not creating a new class for a new kind of thing. Instead, he is providing properties which could have been defined by the original class
designer, but in fact were not. For example, the designers of the NIEM Justice domain have augmented nc:PersonType with the
j:PersonSightedIndicator property, because for the members of the Justice domain it is useful to record whether a person is able to see,
even though to the NIEM community as a whole, adding this property to NIEM Core has not been worth the trouble.

In general, augmentations are preferred over subclassing. At present the NIEM metamodel does not support multiple inheritance. If several
domains were to create a subclass of nc:PersonType , there would be no way for a message designer to combine in his message model the
properties of a person from NIEM Justice, NIEM Immigration, etc. Such a combination is easily done with augmentations.

3.8 Model and message semantics

The RDF Core Working Group of the World Wide Web consortium has developed a simple, consistent conceptual model, the RDF model. The
RDF model is described and specified through a set of W3C Recommendations, the Resource Description Framework (RDF) specifications,
making it a very well defined standard. The interpretations of NIEM models and messages are based on the RDF model. This provides
numerous advantages:

« NIEM'’s conceptual model is defined by a recognized standard.
« NIEM’s conceptual model is very well defined.
« NIEM’s conceptual model provides a consistent basis for relating attributes, elements, types, and other XML Schema components.

« NIEM’s use of the RDF model defines what a set of NIEM data means. The RDF specification provides a detailed description of what a
statement means. This meaning is leveraged by NIEM.

+ NIEM’s use of the RDF model provides a basis for inferring and reasoning about XML data that uses NIEM. That is, using the rules

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 24 of 114

defined for the RDF model, programs can determine implications of relationships between NIEM-defined objects.

Each construct in a NIEM model or message entails a number of RDF triples. NIEMOpen provides free and open-source software to generate
those triples. The identifiers in these triples connect the message data to the model in a way that forms a knowledge graph. Example 3-10
shows some of the triples entailed by the model in example 3-4 and the message inexample 3-2; figure 3-11 shows a knowledge graph
illustration of those triples.

nc:ItemType
rdf:type owl:Class ;
skos:definition "A data type for an article or thing" .

nc:ItemName
rdf:type owl:DataProperty ;
rdfs:range nc:TextType ;
skos:definition "A name of an item." .

msg:RequestedItem
rdf:type owl:0ObjectProperty ;
rdfs:range nc:ItemType ;
skos:definition "A specification of an item request." .

:b® rdf:Type msg:RequestType .

:bO msg:RequestID "RQOO1" .

:bO msg:RequestedItem _:bl .

:b1l rdf:type nc:ItemType .

:bl nc:ItemName "Wrench" .

:bl nc:ItemQuantity "10"AAxsd:decimal .

Example 3-10: RDF triples from a NIEM model and message

msg:RequestType nc:ltemType

rdf-type rdf-type rdf-type

nc:ltemName
n

\msg:ﬁe questiD nc:item Quantity
TTT—— T
RQ&al 18

ncTextType

msg:Re questeditem

Wrench

Figure 3-11: Knowledge graph portrayal of a NIEM model and message

With the exception of section 14: Interpretation of NIEM data, NIEM rules are explained in this document without reference to RDF or RDF
concepts. Understanding RDF is not required to understand NIEM-conformant schemas or data based on NIEM. The knowledge graph
representation of NIEM data is available to the message designers and developers who want it, without burdening those who do not.

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 25 of 114

4. Data models in NIEM

The NIEM metamodel is an abstract model that specifies the content of a NIEM data model. It is described by the UML diagram in figure 4-1
below.

= proparty

Model

0.0 0

Namespace AugmentaiionRecord

5 1 namespacaURI “minOccursQuantly
namespacePrafixTaxt maxOccursQuantity

camponent namespace -
v -namespaceLanguageMame | 0.+ | -avgmentationindex"
namespaceVersionText

Companent

“nama - -
documantationTaxt G o ~conformanceTargetUR|
deprecatedindcator -ArchitecturaVarsionName® LocalTerm
documantFilePah Text e emName

v ~documentation Text

AarmiteraiText

“sourcaURI

“sourcaCitationText

subciassOf = subPropertyOf =
- : G

Class ChidPropertyfssociation Property

= min0: ity property =
-maxccursQuantity 071 7 ordoradPropartyndicatar

documentationText —rslatiorshipPropertylndicater

T

Datstyps

0.1 [N

~ listitemDatatype
ﬁ1 g

Rastrction List Union
“orderedPropartyhdicatar

[

—relerancaCada

datatypa restrictionBase
a

anyProparty
v

OtjectProperty DataPraparty
refarancaCoda “atiibutelnd calor”
—refAtirbutsindicator” .

<dlass

o

cadalistBindin
v

AnyPropartyAssociation

“minOccursQuanity
-maxOcoursQuantity CodeLisBinding
-atributelndicator
-namespaceConstraintText
-processingCode

Facel
cadeListURI acetCategoryCode
—codeListCalumnName Hacatvaue

<cadsListConstramingIndicator <documantation Text

Figure 4-1:The NIEM metamodel
This section specifies:

« the meaning of the classes, attributes, and relationships in the metamodel
« the meaning of the classes, datatypes, and properties in CMF, which implements the metamodel
« the XSD constructs that correspond to CMF classes, datatypes, and properties, and which also implement the metamodel

In addition to the UML diagram, this section contains several tables that document the classes, attributes, and relationships in the metamodel.
These tables have the following columns:

Column Definition

Name the name of the class, attribute, or relationship

Definition the definition of the object or property

Card the number of times this property may/must appear in an object

Ord true when the order of the instances of a repeatable property in an object is significant
Range the class or datatype of a property

Table 4-2: Definition of columns in metamodel property tables

Classes, attributes, and relationships have the same names in the metamodel and in CMF. (Attributes and relationship names have lower
camel case in the diagram and tables, following the UML convention. The tables and the CMF specification use the same names in upper
camel case, following the NIEM convention.)

The definitions in these tables follow NIEM rules for documentation (which are described in section 7.2). As a result, the definition of each
metamodel class begins with "A data type for..." instead of "A class for...". (For historical reasons, the name of every class and datatype in the

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 26 of 114

NIEM model ends in "Type", and this is reflected in the conventions for documentation; see section 3.4.)

Names from CMF and the metamodel do not appear in the XSD representation of a model. Instead, NIEM defines special interpretations of
XML Schema components, making the elements and attributes in an XSD -schema document- equivalent to CMF model components. The
mapping between CMF components and XSD schema components is provided by a table in each section below, with these columns:

Column Definition

CMF CMF component name

XSD XSD equivalent

Table 4-3: Definition of columns in CMF-XSD mapping tables

4.1 Model

A Model object represents a NIEM model.

Model
1 1
component namespace
Gomponent v v Namespace
0.r 0.*
namespace =
0:* 1

Figure 4-4: Model class diagram

Name Definition Card Ord Range

Model A data type for a NIEM data model.

Component A data concept for a component of a NIEM data model. 0..” - ComponentType
Namespace A namespace of a data model component 0.* - NamespaceType

Table 4-5: Properties of the Model object class

In XSD, an instance of the Model class is represented by a-schema document set-.

4.2 Namespace

A Namespace object represents a namespace in a model. For example, the namespace with the URI
https://docs.oasis-open.org/niemopen/ns/model/niem-core/6.0/ is a namespace in the NIEM 6.0 model.

ImportDocumentation Namespace Augmentation

-namespaceURI -namespaceURI
-documentationText = importDocumentation -namespacePrefixText augmentationRecord =
0.* 1’ -documentationText ‘1 0.*
-namespacelLanguageName
-namespaceVersionText
-namespaceCategoryCode LocalTerm
-conformanceTargetURI ¢1 localTerm =
-ArchitectureVersionName*
-documentFilePathText*
-importDocumentation™

Figure 4-6: Namespace class diagram

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 27 of 114

Name Definition Card Ord Range

Namespace A data type for a namespace.

NamespaceURI A URI for a namespace. 1 - | xs:anyURI

NamespacePrefixText A namespace prefix name for a namespace. 1 - | xs:NCName

DocumentationText A human-readable text documentation of a namespace. 1.* Y | TextType

NamespaceLanguageName A name of a default language of the terms and documentation 1 - | xslanguage
text in a namespace.

NamespaceVersionText A version of a namespace; for example,‘used to distinguish a 1 - | xs:token
namespace subset, bug fix, documentation change, etc.

NamespaceCategoryCode A kmq of namespace in a NIEM model (external, core, 1 - | NamespaceCategoryCodeType
domain, etc.).

ConformanceTargetURI A conformance target identifier. 0..” - | xs:anyURI
A name of a version for the utility schema components used

ArchitectureVersionName in an XSD representation of a namespace; e.g. "NIEM5.0" or 0..1 - | xs:token
"NIEM6.0".

DocumentFilePathText A relative file pa_th from the top schema directory to a schema 0.1 - | xs:string
document for this namespace.

ImportDocumentation A documentation of an xs:import element in a schema 0.* - | TextType
document.

AugmentationRecord An augmentation of a class with a property by a namespace. 0.* - | AugmentationType

LocalTerm A data type for the meaning of a term that may appear within 0.+ - | LocalTermType
the name of a model component.

Table 4-7: Properties of the Namespace object class

In XSD, an instance of the Namespace class is represented by the <xs:schema> element in a-schema document-. Example 4-8 shows the
representation of a Namespace object in CMF and in the corresponding XSD.

<Namespace>
<NamespaceURI>https://docs.oasis-open.org/niemopen/ns/model/niem-core/6.0/</NamespaceURI>
<NamespacePrefixText>nc</NamespacePrefixText>
<DocumentationText>NIEM Core.</DocumentationText>
<ConformanceTargetURI>

https://docs.oasis-open.org/niemopen/ns/specification/NDR/6.0/#ReferenceSchemaDocument

</ConformanceTargetURI>
<NamespaceVersionText>ps02</NamespaceVersionText>
<NamespacelLanguageName>en-US</NamespacelLanguageName>

</Namespace>

<xs:schema
targetNamespace="https://docs.oasis-open.org/niemopen/ns/model/niem-core/6.0/"
xmlns:ct="https://docs.oasis-open.org/niemopen/ns/specification/conformanceTargets/6.0/"
xmlns:nc="https://docs.oasis-open.org/niemopen/ns/model/niem-core/6.0/"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
ct:conformanceTargets="https://docs.oasis-open.org/niemopen/ns/specification/NDR/6.0/#ReferenceSchemaDocument"
version="ps@2"
xml:lang="en-US">
<xs:annotation>

<xs:documentation>NIEM Core.</xs:documentation>

</xs:annotation>

</xs:schema>

Example 4-8: Namespace object in CMF and XSD

The following table shows the mapping between Namespace object representations in CMF and XSD.

NamespaceURI xs:schema/@targetNamespace

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 28 of 114

CMF

XSD

NamespacePrefixText The prefix in the first namespace declaration of the target namespace
DocumentationText Xs:schema/xs:annotation/xs:documentation
ConformanceTargetURI Each of the URlIs in the list attribute xs:schema/@ct:conformanceTargets

NamespaceVersionText

Xs:schema/@version

NamespaceLanguageName

xs:schema/@xml:lang

4.3 Component

Table 4-9: Namespace object properties in CMF and XSD

A Component is either a Class object, a Property object, or a Datatype object in a NIEM model. This abstract class defines the common
properties of those three concrete subclasses.

Component Namespace
-Name
-DocumentationText SmeSpm 7

-Deprecatedindicator

Class Property Datatype
Figure 4-10: Component class diagram
Name Definition Card Ord Range
Component A data type for common properties of a data model component in NIEM.
Name The name of a data model component. 1 - | xs:NCName

DocumentationText | A human-readable text definition of a data model component.

0..* Y | TextType

Deprecatedindicator

True for a deprecated schema component; that is, a component that is provided, but
the use of which is not recommended.

0..1 - | xs:boolean

Namespace The namespace of a data model component.

1 - | NamespaceType

Table 4-11: Properties of the Component abstract class

In XSD, the common properties of a Component object are represented by a complex type definition or an element or attribute declaration.
Example 4-12 shows the representation of those common properties in CMF and XSD.

fCopyright © OASIS Open 2025. All Rights Reserved.

f{fformatted_date} - Page 29 of 114

<DataProperty>
<Name>ActivityCompletedIndicator</Name>
<Namespace structures:ref="nc"/>
<DocumentationText>True if an activity has ended; false otherwise.</DocumentationText>
<DeprecatedIndicator>false</DeprecatedIndicator>

<xs:element name="ActivityCompletedIndicator" type="niem-xs:boolean" appinfo:deprecated="false">
<xs:annotation>

<xs:documentation>True if an activity has ended; false otherwise.</xs:documentation>

</xs:annotation>

</xs:element>

Example 4-12: Component object (abstract) in CMF and XSD

The following table shows the mapping between Component object properties in CMF and XSD.

CMF XSD
Name @name of an element or attribute declaration
NamespaceURI @targetNamespace of a schema document
DocumentationText xs:annotation/xs:documentation of an element or attribute declaration
DeprecatedIindicator @appinfo:deprecated of an element or attribute declaration
Table 4-13: Component object properties in CMF and XSD
4.4 Class

A Class object represents a class of message objects defined by a NIEM model. For example, nc:ItemType is a Class object in the NIEM
Core model.

Companant Mameaspaca
-name ne =
-doc jonText o 3
-deprecatadindicator :
subClassOf =
AnyPropartyAssociation a1 Class ChildPropartyAssociafion Propery
-minDccursQuantity -abstractindicator -minJeoursCQuaniity
-maxOccursQuantity = anyProparty -anyAttribute Indicator childPropartyA iation = -maxOccursQuantity proparty =
_atvibutelndicator g @ -anyElementindicatar A = ionText o i
-namespace Constraint Text - —refarenceCoda : h
-processingCode
Figure 4-14: Class, AnyPropertyAssociation, and ChildPropertyAssociation class diagram
Name Definition Card Ord Range
Class A data type for a class.
. True if a class is a base for extension, and must be specialized to
Abstractindicator ; 1 . . p 0..1 - | xs:boolean
be used directly; false if a class may be used directly.
A code describing how a property may be referenced (or must
ReferenceCode o 9 property may (0..1 - | ReferenceCodeType
appear inline).
. An association between a class and a set of properties not full -
AnyPropertyAssociation o prop y 0..* - | AnyPropertyAssociationType
specified by the model.

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 30 of 114

Name Definition Card Ord Range

SubClassOf A base class of a subclass. 0..1 - | ClassType

ChildPropertyAssociation | An association between a class and a child property of that class. 0.* Y | ChildPropertyAssociationType

Table 4-15: Properties of the Class object class

The range of the ReferenceCode property is a -code list- with the following codes and meanings:

Code Definition

ANY A code for a reference that may be any IDREF or URI.

ANYURI A code for a reference that may be any URI.

INTERNAL | A code for a reference to an object in the same message; an IDREF, or a relative URI.

RELURI A code for a reference that is a relative URI.
IDREF A code for a reference that is an IDREF in XML, or a relative URI in an otherwise-empty JSON object; an object pointer.
NONE A code for a property that may not be referenced and must appear inline.

Table 4-16: ReferenceCode code list

Class objects may be categorized into four groups, as follows:

« An object class contains one or more properties from a conforming namespace. An object class has a name ending in "Type". Most class
objects fall into this category.

« An -adapter class- contains only properties from a single external namespace. It acts as a conformance wrapper around data components
defined in standards that are not NIEM conforming. An -adapter class- has a name ending in "AdapterType". (Seesection 9.4.)

« An -association class- represents a specific relationship between objects. Associations are used when a simple NIEM property is
insufficient to model the relationship clearly, or to model properties of the relationship itself. An -association class- has a name ending in
"AssociationType".

« A -literal class: contains no object properties, at least one -attribute property-, and exactly one element property. A -literal class- has a
name ending in "Type".

The instances of most classes (including adapter and association classes) are represented in XML as an element with complex content; that is,
with child elements and sometimes attributes. For example, example 4-17 shows an XML element with complex content, and also the
equivalent in a JSON message.

<ex:ItemweightMeasure> | "ex:ItemWeightMeasure": {
<ex:MassUnitCode>KGM</unece:MassUnitCode> | "ex:MassUnitCode": "KGM"
<ex:MeasureDecimalValue>22.5</ex:MeasureDecimalVvalue> | "ex:MeasureDecimalvalue": 22.5
</ex:ItemWeightMeasure> | 3}

Example 4-17: Instance of a class in XML and JSON

These classes are represented in XSD as a complex type with complex content ("CCC type"); that is, a type with child elements. Example 4-18
below shows a ordinary Class object defining the class of the ItemweightMeasure property in the example above, represented first in CMF,
and then in XSD as a complex type with child elements.

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 31 of 114

<Class structures:id="ex.WeightMeasureType">
<Name>WeightMeasureType</Name>
<Namespace structures:ref="ex" xsi:nil="true"/>
<ChildPropertyAssociation>
<DataProperty structures:ref="ex.MassUnitCode" xsi:nil="true"/>
<MinOccursQuantity>1</MinOccursQuantity>
<MaxOccursQuantity>1</MaxOccursQuantity>
</PropertyAssociation}>
<ChildPropertyAssociation>
<DataProperty structures:ref="ex.MeasureDecimalValue" xsi:nil="true"/>
<MinOccursQuantity>1</MinOccursQuantity>
<MaxOccursQuantity>1</MaxOccursQuantity>
</PropertyAssociation>
</Class>
<xs:complexType name="WeightMeasureType'>
<xs:complexContent>
<xs:extension base="structures:0ObjectType">
<xs:sequence>
<xs:element ref="ex:MassUnitCode"/>
<xs:element ref="ex:MeasureDecimalVvalue"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>

Example 4-18: A Class object in CMF and XSD (CCC type)

The following table shows the mapping between Class object representations in CMF and XSD.

CMF XSD

Abstractindicator xs:complexType/@abstract

ReferenceCode xs:complexType/@appinfo:referenceCode

SubClassOf XS

:complexType/xs:complexContent/xs:extension/@base

XS

ChildPropertyAssociation s

complexType/xs:complexContent/xs:extension/xs:sequence/xs:element or
:complexType/xs:complexContent/xs:extension/xs:attribute

Table 4-19: Class object object properties in CMF and XSD

Instances of a-literal class- are represented as an element with simple content and attributes in XML. Example 4-20 below shows an XML and

JSON instance of a literal class.

<ex:ItemWeightMeasure ex:massUnitCode="KGM">
22.5
</ex:ItemWeightMeasure>

}

"ex:ItemWeightMeasure": {

"ex:massUnitCode": "KGM",
"ex:WeightMeasurelLiteral": 22.5

Example 4-20: Instance of a literal class in XML and JSON

A -literal class- is represented in XSD as a complex type with simple content ("CSC type") and attributes. This is illustrated in example 4-21
below, which shows a -literal class- defining the class of the ItemWeightMeasure property in example 4-20 above.

fCopyright © OASIS Open 2025. All Rights Reserved.

f{fformatted_date} - Page 32 of 114

<Class structures:id="ex.WeightMeasureType">
<Name>WeightMeasureType</Name>
<Namespace structures:ref="ex" xsi:nil="true"/>
<ChildPropertyAssociation>
<DataProperty structures:ref="ex.massUnitCode" xsi:nil="true"/>
<MinOccursQuantity>1</MinOccursQuantity>
<MaxOccursQuantity>1</MaxOccursQuantity>
</ChildPropertyAssociation>
<ChildPropertyAssociation>
<DataProperty structures:ref="ex.WeightMeasureLiteral" xsi:nil="true"/>
<MinOccursQuantity>1</MinOccursQuantity>
<MaxOccursQuantity>1</MaxOccursQuantity>
</ChildPropertyAssociation>
</Class>
<xs:complexType name="WeightMeasureType'>
<xs:simpleContent>
<xs:extension base="xs:decimal">
<xs:attribute ref="ex:massUnitCode" use="required"/>
<xs:attributeGroup ref="structures:SimpleObjectAttributeGroup"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>

Example 4-21: A literal class object in CMF and XSD (CSC type)

A -literal class- always has one DataProperty that is not an-attribute property-. This property is named after the class, with "Type" replaced by
"Literal" The property does not appear in the XSD representation of the literal class, or as a separate element in the XML message.

A -literal class- always has at least one -attribute property-. In XSD, a complex type with simple content and no attributes represents a Datatype,
not a Class.

4.5 ChildPropertyAssociation

An instance of the ChildPropertyAssociation class represents an association between a class and a child property of that class. For example,
nc:PersonMiddleName property and nc:personNameCommentText are two child properties of the nc:PersonType class.

Name Definition Card Ord Range

ChildPropertyAssociation | A data type for an occurrence of a property as content of a class.

MinOccursQuantity The minimum number of times a property may occur within an object of a class. 1 - | xs:integer

MaxOccursQuantity The maximum number of times a property may occur within an object of a class. 1 - | MaxOccursType

A human-readable documentation of the association between a class and a

DocumentationText child property content of that class.

0.* Y | TextType

Property The property that occurs in the class. 1 - | PropertyType

Table 4-22: Properties of the ChildPropertyAssociation object class

A ChildPropertyAssociation object is represented in XSD as an element or attribute reference within a complex type definition. Example 4-23
shows the representation of two PropertyAssociation objects, first in CMF, and then in XSD.

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 33 of 114

<ChildPropertyAssociation>
<ObjectProperty structures:ref="nc.PersonMiddleName" xsi:nil="true"/>
<MinOccursQuantity>0</MinOccursQuantity>
<MaxOccursQuantity>unbounded</MaxOccursQuantity>
<DocumentationText>
Documentation here is unusual; it refers to the association between the object and this property.
</DocumentationText>
</ChildPropertyAssociation>
<ChildPropertyAssociation>
<DataProperty structures:ref="nc:personNameCommentText" xsi:nil="true"/>
<MinOccursQuantity>0</MinOccursQuantity>
<MaxOccursQuantity>1</MaxOccursQuantity>
</ChildPropertyAssociation>
<xs:sequence>
<xs:element ref="nc:PersonMiddleName" minOccurs="0" maxOccurs="unbounded">
<xs:annotation>
<xs:documentation>
Documentation here is unusual; it refers to the relationship between the object and this property.
</xs:documentation>
</xs:annotation>
</xs:element>
</Xxs:sequence>
<xs:attribute ref="nc:personNameCommentText" use="optional"/>

Example 4-23: ChildPropertyAssociation object in CMF and XSD

The following table shows the mapping between ChildPropertyAssociation representations in CMF and XSD.

CMF XSD

Property The property object for xs:element/@ref or xs:attribute/@ref .
MinOccursQuantity xs:element/@minOccurs or xs:attribute/@use
MaxOccursQuantity xs:element/@maxOccurs

xs:element/xs:annotation/xs:documentation or

DocumentationText xs:attribute/xs:annotation/xs:documentation

OrderedPropertylndicator | xs:element/@appinfo:orderedPropertyIndicator

Table 4-24: ChildPropertyAssociation object properties in CMF and XSD

4.6 AnyPropertyAssociation

An instance of the AnyPropertyAssociation class represents an association between a class and a "wildcard" set of possible properties that are
not fully specified by the model. It is an exact analogue of the xs:any and xs:anyAttribute constructs in XSD.

Name Definition Card Ord Range

AnyPropertyAssociation A data type for a set of partially specified properties of a class.

MinOccursQuantity The.m|n|mur.'n number of times the properties from the set may occur 1 - | xsinteger
within an object of a class.

MaxOccursQuantity The.maxmu.m number of times the properties from the set may occur 1 - | MaxOceursType
within an object of a class.

DocumentationText A human-readablle' documentgtlon of the association between a class and 0.+ Y | TextType
the set of unspecified properties.

Attributelndicator ')I;rMuE for a set of partially specified properties represented as attributes in 0.1 - | xs:boolean

NamespaceConstraintText A description of the namespace constraints on a partially specified 0.1 - | xs:string
property of a class.

ProcessingCode A code describing the validation required for each partially specified 0.1 - | ProcessingCodeType
property in the set.

An AnyPropertyAssociation object is represented in XSD as a schema wildcard. Example 4-25 shows the representation of two

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 34 of 114

AnyPropertyAssociation objects, firstin CMF and then in XSD.

<Class>
<Name>RequestType</Name>
<Namespace structures.ref="msg"/>
<ChildPropertyAssociation>
<Property structures:ref="msg.RequestID/>
<MinOccursQuantity>1</MinOccursQuantity>
<MaxOccursQuantity>1</MaxOccursQuantity>
</ChildPropertyAssociation>
<ChildPropertyAssociation>
<Property structures:ref="msg.RequestedItem/>
<MinOccursQuantity>1</MinOccursQuantity>
<MaxOccursQuantity>1</MaxOccursQuantity>
</ChildPropertyAssociation>
<AnyPropertyAssociation>
<MinOccursQuantity>1</MinOccursQuantity>
<MaxOccursQuantity>1</MaxOccursQuantity>
<NamespaceConstraintText>https://docs.oasis-open.org/niemopen/ns/model/niem-core/6.0/</NamespaceConstraintText>
<ProcessingCode>strict</ProcessingCode>
</AnyPropertyAssociation>
<AnyPropertyAssociation>
<AttributeIndicator>true</AttributeIndicator>
<NamespaceConstraintText>##targetNamespace</NamespaceConstraintText>
<ProcessingCode>lax</ProcessingCode>
</AnyPropertyAssociation>
</Class>
<xs:schema
targetNamespace="http://example.com/ReqRes/1.0/"
xmlns:msg="ttp://example.com/ReqRes/1.0/"
xmlns:nc="https://docs.oasis-open.org/niemopen/ns/model/niem-core/6.0/" ... >
<xs:complexType name="RequestType'>
<xs:complexContent>
<xs:extension base="structures:0ObjectType'">
<xs:sequence>
<xs:element ref="msg:RequestID"/>
<xs:element ref="msg:RequestedItem"/>
<xs:any namespace="https://docs.oasis-open.org/niemopen/ns/model/niem-core/6.0/" processContents="strict"/>
</xs:sequence>
<xs:anyAttribute namespace="##targetNamespace" processContents="lax"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>

Example 4-25: AnyPropertyAssociation objects in CMF and XSD

The meaning and valid values of NamespaceConstraintText and ProcessingCode are copied from [XML Schema]. The following table shows
the mapping between AnyPropertyAssociation representations in CMF and XSD.

CMF XSD

Property The property object for xs:element/@ref or xs:attribute/@ref .
MinOccursQuantity xs:element/@minOccurs or xs:attribute/@use
MaxOccursQuantity xs:element/@max0Occurs

DocumentaionText | X3:Plement s amotecion s cocunentation o
Attributelndicator Xs:any or xs:anyAttribute

NamespaceConstraintText | @namespace

ProcessingCode @processContents

Table 4-26: ChildPropertyAssociation object properties in CMF and XSD

4.7 Property

A Property object in a NIEM model is either an ObjectProperty or a DataProperty. This abstract class defines the common properties of those
two concrete subclasses.

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 35 of 114

Component Namespace
SIEIE namespace =
-namespace o]
-documentationText -
- subProperyOf
Class Property 0 Datatype
-abstractindicator
-orderedPropertylndicator 1
-relationshiplndicator
Py
1
datatype =
ObjectProperty DataProperty
= class -referenceCode attributelndicator”
-refAttributeIndicator*
0.7 0.*
Figure 4-27: Property class diagram
Name Definition Card Ord Range
Property A data type for a property.
Abstractindicator True if a property must be specialized; false if a property may be used directly. 0..1 - | xs:boolean
OrderedPropertylndicator | True if the order of a repeated property within an object is significant. 0..1 - | xs:boolean
RelationshipIndicator True for a relationship property, a property that applies to the relationship between 0.1 - | xs:boolean
its parent and grandparent objects.
SubPropertyOf A property of which a property is a subproperty. 0..1 - | PropertyType

Table 4-28: Properties of the Property abstract class

Apart from the message object, every object in a message is a child property of another object, and typically provides information about that
object. A relationship property instead provides information about the relationship between its parent and grandparent objects. Section 5.3
provides an example.

The examples of a Property object in CMF and XSD, and the table showing the mapping between the CMF and XSD representations, are
shown below in the definitions of the concrete subclasses, ObjectProperty and DataProperty.

4.8 ObjectProperty

An instance of the ObjectProperty class represents a property in a NIEM model with a range that is a class. For example, the
nc:PersonMiddleName object in the NIEM core model is an object property with a range of the nc:PersonNameTextType class.

Name Definition Card Ord Range

ObjectProperty A data type for an object property.

ReferenceCode | A code describing how a property may be referenced (or must appear inline). 0..1 - ReferenceCodeType

Class The class of this object property. 0..1 - ClassType

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 36 of 114

Table 4-29: Properties of the ObjectProperty object class

An ObjectProperty object is represented in XSD as an element declaration with a type that is a Class object. Example 4-30 shows an
ObjectProperty object, represented first in CMF, and then in XSD.

<ObjectProperty structures:id="ex.ExampleObjectProperty">
<Name>ExampleObjectProperty</Name>
<Namespace structures:ref="ex" xsi:nil="true"/>
<DocumentationText>Documentation text for ExampleObjectProperty.</DocumentationText>
<DeprecatedIndicator>false</DeprecatedIndicator>
<AbstractIndicator>true</AbstractIndicator>
<ReferenceCode>URI</ReferenceCode>
<Class structures:ref="ex.ExType" xsi:nil="true"/>

</0ObjectProperty>

<xs:element name="ExampleObjectProperty" type="ex:ExType" abstract="true" appinfo:referenceCode="URI">
<xs:annotation>

<xs:documentation>Documentation text for ExampleObjectProperty.</xs:documentation>

</xs:annotation>

</xs:element>

Example 4-30: ObjectProperty object in CMF and XSD

The following table shows the mapping between ObjectProperty object representations in CMF and XSD.

CMF XSD

Namespace The namespace object for the containing schema document.
Name xs:complexType/@name

DocumentationText xs:complexType/xs:annotation/xs:documentation
DeprecatedIndicator xs:complexType/@appinfo:deprecated

Abstractindicator xs:complexType/@abstract

SubPropertyOf The property object for xs:element/@substitutionGroup
RelationshipPropertyIndicator xs:element/@appinfo:relationshipPropertyIndicator
Class The class object for xs:element/@type

ReferenceCode xs:complexType/@appinfo:referenceCode

Table 4-31: ObjectProperty object properties in CMF and XSD

4.9 DataProperty

An instance of the DataProperty class represents a property in a NIEM model with a range that is a datatype. For example, the
nc:personNameCommentText property in the NIEM core model is a data property with a range of the xs:string datatype.

Name Definition Card Ord Range
DataProperty A data type for adata property.

Attributelndicator True for a property that is represented as attributes in XML. 0..1 - xs:boolean
RefAttributeIndicator True for a property that is an -reference attribute property-. 0..1 - xs:boolean
Datatype The datatype of this data property. 1 - DatatypeType

Table 4-32: Properties of the DataProperty object class

An -attribute property- is a data property in which AttributeIndicator is true. These are represented in XSD as an attribute declaration.

A DataProperty object is represented in XSD as an attribute declaration, or as an element declaration with a type that is a Datatype object.
Example 4-33 shows the representations of two DataProperty objects, first in CMF, and then in the corresponding XSD.

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 37 of 114

<DataProperty structures:id="ex.ExampleDataProperty">
<Name>ExampleDataProperty</Name>
<Namespace structures:ref="ex" xsi:nil="true"/>
<DocumentationText>Documentation text for ExampleDataProperty.</DocumentationText>
<DeprecatedIndicator>true</DeprecatedIndicator>
<AbstractIndicator>true</AbstractIndicator>
<SubPropertyOf structures:ref="ex.PropertyAbstract" xsi:nil="true"/>
<Datatype structures:ref="ex.ExType" xsi:nil="true"/>

</DataProperty>

<DataProperty structures:id="ex.exampleAttributeProperty">
<Name>exampleAttributeProperty</Name>
<Namespace structures:ref="ex" xsi:nil="true"/>
<DocumentationText>Documentation text for AttributeProperty.</DocumentationText>
<DeprecatedIndicator>true</DeprecatedIndicator>
<Datatype structures:ref="xs.string" xsi:nil="true"/>
<AttributeIndicator>true</AttributeIndicator>
<RefAttributeIndicator>true</RefAttributeIndicator>

</DataProperty>

<xs:element name="ExampleDataProperty" type="ex:ExType" substitutionGroup="ex:PropertyAbstract" appinfo:deprecated="true">
<xs:annotation>

<xs:documentation>Documentation text for ExampleDataProperty.</xs:documentation>

</xs:annotation>

</xs:element>

<xs:attribute name="exampleAttributeProperty" type="xs:string" appinfo:referenceAttributeIndicator="true">
<xs:annotation>

<xs:documentation>Documentation text for ExampleDataProperty.</xs:documentation>

</xs:annotation>

</xs:attribute>

Example 4-33: DataProperty object in CMF and XSD

The following table shows the mapping between DataProperty representations in CMF and XSD.

CMF XSD

Namespace The namespace object for the containing schema document.
Name Xs:complexType/@name

DocumentationText xs:complexType/xs:annotation/xs:documentation
DeprecatedIindicator xs:complexType/@appinfo:deprecated

Abstractindicator xs:complexType/@abstract

SubPropertyOf The property object for xs:element/@substitutionGroup
RelationshipPropertyIndicator xs:element/@appinfo:relationshipPropertyIndicator
Datatype The datatype object for xs:element/@type

AttributeIndicator True for an attribute declaration.

RefAttributelndicator xs:attribute/@appinfo:referenceAttributeIndicator

Table 4-34: DataProperty object properties in CMF and XSD

4.10 Datatype

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 38 of 114

Datatype = unionMemberDatatype

= listitemDatatype

1 1.%
S
. -
restricts A
Restriction List Union
-orderedPropertylndicator |__|
0~
1 1
codeListBinding facet
v v
CodeListBinding 01 0 Facet
-codeListURI -facetCategoryCode
-codeListColumnMName -facetValue
-codeListConstrainingindicator -documentationText

Figure 4-35: Datatype classes

An instance of the Datatype class defines the allowed values of a data property in a-message-. Objects for primitive data types, corresponding
to the XSD data types, have only the name, namespace, and documentation properties inherited from the Component class. For example,
example 4-38 shows the CMF representation of the xs:string primitive data type. Datatypes that are not built into XSD are represented by
either a Restriction, List, or Union object.

<Datatype>
<Name>string</Name>
<Namespace structures:ref="xs" xsi:nil="true"/>
</Datatype>
Example 4-36: Plain CMF datatype object for "xs:string’
4.11 List

An instance of the List class represents a NIEM model datatype with values that are a whitespace-separated list of literal values.

Name Definition Card Ord Range
List A data type for a NIEM model datatype that is a whitespace-separated list of literal values.
ListitemDatatype | The datatype of the literal values in a list. 1 - | DatatypeType

Table 4-37: Properties of the List object class

A List object is represented in XSD as a complex type definition that extends a simple type definition that has an xs:1list element. Example
4-38 shows the CMF and XSD representation of a List object.

fCopyright © OASIS Open 2025. All Rights Reserved.

f{fformatted_date} - Page 39 of 114

<List structures:id="ex.ExListType">
<Name>ExListType</Name>
<Namespace structures:ref="ex" xsi:nil="true"/>
<DocumentationText>A data type for a list of integers.</DocumentationText>
<ListItemDatatype structures:ref="xs.integer" xsi:nil="true"/>
</List>
<xs:simpleType name="ExListSimpleType">
<xs:list itemType="xs:integer"/>
</xs:isimpleType>
<xs:complexType name="ExListType">
<xs:annotation>
<xs:documentation>A data type for a list of integers.</xs:documentation>
</xs:annotation>
<xs:simpleContent>
<xs:extension base="ex:ExListSimpleType'>
<xs:attributeGroup ref="structures:SimpleObjectAttributeGroup"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>

Example 4-38: List object in CMF and XSD

The following table shows the mapping between List object representations in CMF and XSD.

CMF XSD
Namespace The namespace object for the containing schema document.
Name xs:complexType/@name
DocumentationText xs:complexType/xs:annotation/xs:documentation
Deprecatedindicator xs:complexType/@appinfo:deprecated
ListltemDatatype xs:simpleType/xs:list/@itemType

Table 4-39: List object properties in CMF and XSD

4.12 Union

An instance of the Union class represents a NIEM model datatype that is the union of one or more datatypes.

Name Definition Card Ord Range
Union A data type for a NIEM model datatype that is a union ofdatatypes.
UnionMemberDatatype A NIEM model datatype that is a member of a union datatype. 1.* - DatatypeType

Table 4-40: Properties of the Union object class

A Union object is represented in XSD as a complex type definition that extends a simple type definition that has an xs:union element.
Example 4-41 shows the XSD and CMF representations of a Union object.

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 40 of 114

<Union structures:id="ex.UnionType">
<Name>UnionType</Name>
<Namespace structures:ref="test" xsi:nil="true"/>
<DocumentationText>A data type for a union of integer and float datatypes.</DocumentationText>
<UnionMemberDatatype structures:ref="xs.integer" xsi:nil="true"/>
<UnionMemberDatatype structures:ref="xs.float" xsi:nil="true"/>
</Union>
<xs:simpleType name="UnionSimpleType'>
<xs:union memberTypes="xs:integer xs:float"/>
</xs:simpleType>
<xs:complexType name="UnionType'>
<xs:annotation>
<xs:documentation>A data type for a union of integer and float datatypes.</xs:documentation>
</xs:annotation> <xs:simpleContent>
<xs:extension base="ex:UnionSimpleType">
<xs:attributeGroup ref="structures:SimpleObjectAttributeGroup"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>

Example 4-41: Union object in CMF and XSD

The following table shows the mapping between UnionDatatype object representations in CMF and XSD.

CMF XSD

Namespace The namespace object for the containing schema document.
Name xs:complexType/@name

DocumentationText xs:complexType/xs:annotation/xs:documentation
Deprecatedindicator xs:complexType/@appinfo:deprecated
UnionMemberDatatype xs:simpleType/xs:union/@memberTypes

Table 4-42: Union object properties in CMF and XSD

4.13 Restriction

An instance of the Restriction class represents a NIEM model datatype as a base datatype plus zero or more constraining facets.

Name Definition Card Ord Range

Restriction A data type for a restriction of a data type.

RestrictionBase | The NIEM model datatype that is restricted by this datatype. 1 - | DatatypeType

Facet A constraint on an aspect of a data type. 0.” - | FacetType
CodeListBinding ﬁgg:ﬁ;ﬁy for connecting literal values defined by a data type to a a column of a 0.1 - | CodeListBindingType

Table 4-43: Properties of the Restriction object class

A Restriction object is represented in XSD as a complex type with simple content that contains an xs:restriction element. Example 4-44
shows the CMF and XSD representations of a Restriction object.

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 41 of 114

<Restriction structures:id="test.RestrictionType">
<Name>RestrictionType</Name>
<Namespace structures:ref="test" xsi:nil="true"/>
<DocumentationText>Exercise code list binding</DocumentationText>
<RestrictionBase structures:ref="xs.token" xsi:nil="true"/>
<Facet>
<FacetCategoryCode>enumeration</FacetCategoryCode>
<FacetValue>GB</Stringvalue>
</Facet>
<Facet>
<FacetCategoryCode>enumeration</FacetCategoryCode>
<FacetValue>US</StringValue>
</Facet>
<CodelListBinding>
<CodelListURI>http://api.nsgreg.nga.mil/geo-political/GENC/2/3-11</CodeListURI>
<CodelListColumnName>foo</CodeListColumnName>
<CodelistConstrainingIndicator>true</CodeListConstrainingIndicator>
</CodeListBinding>
</Restriction>
<xs:complexType name="RestrictionType">
<xs:annotation>
<xs:appinfo>
<clsa:SimpleCodelListBinding codelListURI="http://api.nsgreg.nga.mil/geo-political/GENC/2/3-11"
columnName="fo0" constrainingIndicator="true"/>
</xs:appinfo>
</xs:annotation>
<xs:simpleContent>
<xs:restriction base="niem-xs:token">
<xs:enumeration value="GB"/>
<xs:enumeration value="US"/>
</xs:restriction>
</xs:simpleContent>
</xs:complexType>

Example 4-44: Restriction object in CMF and XSD

The following table shows the mapping between Restriction object representations in CMF and XSD.

CMF XSD

Namespace The namespace object for the containing schema document.

Name xs:complexType/@name

DocumentationText xs:complexType/xs:annotation/xs:documentation

DeprecatedIindicator xs:complexType/@appinfo:deprecated

RestrictionBase The datatype object for xs:complexType/xs:simpleContent/xs:restriction/@base
Facet xs:complexType/xs:simpleContent/xs:restriction/ facet-element
CodelListBinding xs:complexType/xs:annotation/xs:appinfo/clsa:SimpleCodeListBinding

Table 4-45: Restriction object properties in CMF and XSD

A -code list- is a set of string values, each having a known meaning beyond its value, each representing a distinct conceptual entity. These
code values may be meaningful text or may be a string of alphanumeric identifiers that represent abbreviations for literals.

A -code list datatype- is a Restriction in which each value that is valid for the datatype corresponds to a code value in a -code list-.

Many code list datatypes have an XSD representation composed of xs:enumeration values. Code list datatypes may also be constructed
using the NIEM Code Lists Specification[Code Lists], which supports code lists defined using a variety of methods, including CSV
spreadsheets; these are represented by a CodeListBinding object, described in section 4.15 below.

4.14 Facet

An instance of the Facet class specifies a constraint on the base datatype of a Restriction object.

Definition Card Ord Range

Facet A data type for a constraint on an aspect of a data type.

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 42 of 114

Name Definition Card Ord Range

FacetCategoryCode | A kind of constraint on a restriction datatype. 1 - | FacetCategoryCodeType

FacetValue A value of a constraint on a restriction datatype. 1 - | xs:string

DocumentationText | A human-readable documentation of a constraint on a restriction datatype. 0.” Y | TextType

Table 4-46: Properties of the Facet object class

The range of the FacetCategoryCode property is a -code list-. The twelve codes correspond to the twelve constraining facets in [XML
Schema Structures]; that is, the code length corresponds to the xs:length constraining facet in XSD, and constrains the valid values of
the base datatype in the same way as the XSD facet.

A Facet object is represented in XSD as a constraining facet on a simple type. Example 4-47 shows the representation of two Facet objects,
first in CMF, then in XSD:

<Facet>
<FacetCategoryCode>minInclusive</FacetCategoryCode>
<FacetValue>0</FacetValue>

</Facet>

<Facet>
<FacetCategoryCode>maxExclusive</FacetCategoryCode>
<FacetValue>360</FacetValue>

</Facet>

<xs:restriction base="niem-xs:decimal">
<xs:minInclusive value="0"/>
<xs:maxExclusive value="360"/>

</xs:restriction>

Example 4-47: Facet object in CMF and XSD

The following table shows the mapping between Facet representations in CMF and XSD:

CMF XSD

FacetCategoryCode the local name of the facet element; e.g. minInclusive
FacetValue @value

DocumentationText xs:annotation/xs:documentation

Table 4-48: Facet object properties in CMF and XSD

4.15 CodelListBinding

An instance of the CodeListBinding class establishes a relationship between a Restriction object and a -code list- specification. The detailed
meaning of the object properties is provided in [Code Lists].

Name Definition Card Ord Range
CodeListBinding A data type for connecting simple co_ntent defined by an XML Schema

component to a a column of a code list.
CodelListURI A universal identifier for a code list. 1 - | xs:anyURI
CodelListColumnName A local name for a code list column within a code list. 0..1 - | xs:string

True when a code list binding constrains the validity of a code list value, false

CodeListConstrainingIndicator .
otherwise.

0..1 - xs:boolean

Table 4-49: Properties of the CodeListBinding object class

A CodelListBinding object is represented in XSD as a clsa:SimpleCodelListBinding elementin an xs:appinfo element. Example 4-50
shows the representation of a CodeListBinding object, first in CMF, then in XSD.

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 43 of 114

<CodelListBinding>
<CodelListURI>http://api.nsgreg.nga.mil/geo-political/GENC/2/3-11</CodeListURI>
<CodelListConstrainingIndicator>false</CodeListConstrainingIndicator>
</CodeListBinding>
<xs:simpleType name="CountryAlpha2CodeSimpleType">
<xs:annotation>
<xs:documentation>A data type for country codes.</xs:documentation>
<xs:appinfo>
<clsa:SimpleCodelListBinding codelListURI="http://api.nsgreg.nga.mil/geo-political/GENC/2/3-11"constrainingIndicator="false"/>
</xs:appinfo>

Example 4-50: CodeListBinding object in CMF and XSD

The following table shows the mapping between CodeListBinding representations in CMF and XSD.

CMF XSD

CodeListURI clsa:SimpleCodelListBinding/@codelListURI
CodeListColumnName clsa:SimpleCodelListBinding/@columnName
CodelListConstraininglndicator clsa:SimpleCodeListBinding/@constrainingIndicator

Table 4-51: CodeListBinding object properties in CMF and XSD

4.16 Augmentation class

class Class
0.1

Namespace AugmentationRecord

-minCccurQuantity 7
augmentation = -maxOccursQuantity

.1 0.* > -globalClassCode
-augmentationindex™ 1
Property
property

1

Figure 4-52: Augmentation class diagram

Augmentation is the NIEM mechanism allowing the author of one namespace (the augmenting namespace) to add a property to a class in
another namespace (the augmented namespace) — without requiring any change to the augmented namespace. For example, the model
designers for the NIEM Justice domain augmented the nc:PersonType class with the j:PersonSightedIndicator property. Then:

e https://docs.oasis-open.org/niemopen/ns/model/domains/justice/6.0/ isthe augmenting namespace
e https://docs.oasis-open.org/niemopen/ns/model/niem-core/6.0/ isthe augmented namespace
e j:PersonSightedIndicator is an -augmentation property-
e nc:PersonType is the augmented class
If a -message model- includes this augmentation, then a conforming message may contain instances of the nc:PersonType class that have

the j:PersonSightedProperty property. Without an augmentation, j:PersonSightedProperty may not appearin nc:PersonType
message objects.

4.16.1 Augmentations in CMF

In CMF, an augmentation is represented as an AugmentationRecord object belonging to the augmenting namespace. In this way, each
namespace contains a complete list of all the augmentations it makes.

Name Definition Card Ord Range

AugmentationRecord | A data type for a class that is augmented with a property by a namespace.

The minimum number of times a property may occur within a message object 1

of this class. - | xs:integer

MinOccursQuantity

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 44 of 114

Name Definition Card Ord Range

The maximum number of times a property may occur within a message object 1

MaxOccursQuantity of this class. - | MaxOccursType
Augmentationindex ;I;PE)(Z.ordmal position of this -augmentation property- within an -augmentation 0.1 - | xsiinteger

A code for a kind of class object class, -association class:, or -literal class:),
GlobalClassCode such that every class of that kind in a model is augmented with the 0..* - | GlobalClassCodeType
-augmentation property-

Class The augmented class. 0..1 - | ClassType

Property The -augmentation property- . 1 - PropertyType

Table 4-53: Properties of the Augmentation object class

For example, augmentation of nc:PersonType with j:PersonAdultIndicator and j:PersonSightedIndicator by the NIEM Justice
namespace is done with the following CMF:

<Namespace>
<NamespaceURI>https://docs.oasis-open.org/niemopen/ns/model/domains/justice/6.0/</NamespaceURI>
<NamespacePrefix>j</NamespacePrefix>
<AugmentationRecord>
<Class structures:ref="nc.PersonType" xsi:nil="true"/>
<Property structures:ref="j.PersonAdultIndicator" xsi:nil="true"/>
<MinOccursQuantity>0</MinOccursQuantity>
<MaxOccursQuantity>unbounded</MaxOccursQuantity>
<AugmentationIndex>0</AugmentationIndex>
</AugmentationRecord>
<AugmentationRecord>
<Class structures:ref="nc.PersonType" xsi:nil="true"/>
<Property structures:ref="j.PersonSightedIndicator" xsi:nil="true"/>
<MinOccursQuantity>0</MinOccursQuantity>
<MaxOccursQuantity>unbounded</MaxOccursQuantity>
<AugmentationIndex>1</AugmentationIndex>
</AugmentationRecord>
</Namespace>

Example 4-54: Augmenting a single class in CMF

A global augmentation adds a property to every class of a specified kind in the model. In CMF, a global augmentation is represented by an
AugmentationRecord object with a GlobalClassCode property and no Class property. For example, a global augmentation adding
my:PrivacyAssertion to every everyobject class and -association class- is done with the following CMF:

<Namespace>
<NamespaceURI>http://example.com/MyNamespace/</NamespaceURI>
<NamespacePrefix>my</NamespacePrefix>
<AugmentationRecord>
<Property structures:ref="my.PrivacyAssertion"/>
<MinOccursQuantity>1</MinOccursQuantity>
<MaxOccursQuantity>1</MaxOccursQuantity>
<AugmentationIndex>0</AugmentationIndex>
<GlobalClassCode>0BJECT</GlobalClassCode>
<GlobalClassCode>ASSOCIATION</GlobalClassCode>
</AugmentationRecord>
</Namespace>

Example 4-55: Global augmentation in CMF

The range of the GlobalClassCode property is a-code list- with the following codes and meanings:

Code Definition

OBJECT A code for an -augmentation property- that applies to all object classes in the model.

ASSOCIATION | A code for an -augmentation property- that applies to all association classes in the model.

LITERAL A code for an -augmentation property- that applies to all datatypes and literal classes in the model. (see §4.16.2.4)

Table 4-56: GlobalClassCode code list

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 45 of 114

4.16.2 Augmentations in XSD
The XSD representation of an augmentation is complex, and varies based on three factors:

1. Whether the -augmentation property- is an -attribute property- or an element property
2. Whether the augmented class is an object class, -association class:, or -literal class-.
3. Whether the augmentation is a global augmentation, or applies to a single augmented class.

4.16.2.1 Attribute augmentations in XSD

Augmenting any class with anattribute property in XSD is done through appinfo:Augmentation elements in the schema document for the
augmenting namespace. These elements appear as children of xs:schema/xs:annotation/xs:appinfo . The following table shows the
mapping between Augmentation object representations in CMF and XSD.

CMF XSD Mapping

Class appinfo:Augmentation/@class

Property appinfo:Augmentation/@property

MinOccursQuantity appinfo:Augmentation/@required 1 if true, otherwise 0
MaxOccursQuantity - always 1
Augmentationindex - not applicable
GlobalClassCode appinfo:Augmentation/@globalClassCode list of code values

Table 4-57: Augmentation object properties in CMF and XSD

Example 4-70 shows XSD and corresponding CMF for a namespace augmenting nc:PersonType with an optional my:privacyCode
attribute property. Example 4-71 shows XML and JSON message objects containing that -augmentation property-.

<xs:schema
targetNamespace="http://example.com/MyNS/"
xmlns:my="http://example.com/MyNS/" ... >
<xs:annotation>
<xs:appinfo>
<appinfo:Augmentation class="nc:PersonType" property="my:privacyCode">
</xs:appinfo>
</xs:annotation>
<AugmentationRecord>
<Class structures:ref="nc.PersonType"/>
<Property structures:ref="my:privacyCode"/>
<MinOccursQuantity>1</MinOccursQuantity>
<MaxOccursQuantity>1</MaxOccursQuantity>
</AugmentationRecord>

Example 4-58: Attribute augmentation in XSD and CMF model representations

"nc:Person": {
"nc:PersonBirthDate": {
"nc:Date": "2021-09-11"
"my:privacyCode": "SECRET"

<nc:Person>

<nc:PersonBirthDate my:privacyCode="SECRET">

<nc:Date>2021-09-11</nc:Date>

</nc:PersonBirthDate>
<nc:PersonName> | 3,

<nc:PersonFullName>John Doe</nc:PersonFullName> | "nc:PersonName": {
</nc:PersonName> | "nc:PersonFullName": "John Doe"
</nc:Person> | 3

|3

Example 4-59: Attribute augmentations in XML and JSON messages

Mandatory attribute augmentations in XSD include use="required" in the Appinfo element. Global attribute augmentations in XSD include
the globalClassCode attribute containing the appropriate codes. In Example 4-73, all classes are augmented with the mandatory attribute
my:privacyCode .

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 46 of 114

<xs:schema
targetNamespace="http://example.com/MyNS/"
xmlns:my="http://example.com/MyNS/" ... >
<xs:annotation>
<xs:appinfo>
<appinfo:Augmentation property="my:privacyCode" use="required" globalClassCode="ASSOCIATION OBJECT LITERAL"/>
</xs:appinfo>
</xs:annotation>

Example 4-60: Mandatory global attribute augmentation in XSD model representation

4.16.2.2 Augmenting one object class or association class with an element property

In XSD, an object class or an -association class: is represented by a complex type definition with complex content (a "CCC type"). For example,
nc:PersonType is represented as the following CCC type definition (some properties are omitted for simplicity):

<xs:complexType name="PersonType'">
<xs:annotation>
<xs:documentation>A data type for a human being.</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base="structures:0ObjectType'">
<Xs:sequence>
<xs:element ref="nc:PersonBirthDate" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="nc:PersonName" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="nc:PersonAugmentationPoint" minOccurs="0" maxOccurs="unbounded"/>
</Xxs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>

Example 4-61: Complex type with complex content (CCC type) defining an object class in an XSD model representation

Every object and assocation class in NIEM XSD contains an-augmentation point element-. This is an abstract element declaration in the same
namespace, having the same name as the type which contains it, with the final "Type" replaced with "AugmentationPoint" (see rule 9-94). In
example 4-71, nc:PersonAugmentationPoint is the -augmentation point element- for nc:PersonType . Because it is abstract, an
-augmentation point element- cannot appear in a message. Instead, it is a placeholder for element substitution.

<xs:element name="PersonAugmentationPoint" abstract="true">
<xs:annotation>
<xs:documentation>An augmentation point for PersonType</xs:documentation>
</xs:annotation>
</xs:element>

Example 4-62: An augmentation point element declaration

A namespace augments an object or augmentation class with anelement property in XSD by defining an -augmentation type- and an
-augmentation element:. Together these define a container element for the desired augmentation properties, a container that substitutes for the
-augmentation point element:. For example, example 4-73 shows the XSD for the NIEM Justice namespace augmenting nc:PersonType with
two properties. (The corresponding CMF was shown in example 4-54.)

<xs:complexType name="PersonAugmentationType'>
<xs:complexContent>
<xs:extension base="structures:AugmentationType'>
<xs:sequence>
<xs:element ref="j:PersonAdultIndicator" minOccurs="0"/>
<xs:element ref="j:PersonSightedIndicator" minOccurs="0"/>
</Xxs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:element name="PersonAugmentation" type="j:ExampleAugmentationType" substitutionGroup="nc:PersonAugmentationPoint"/>

Example 4-63: Augmenting a class with an augmentation type and element in XSD

Example messages containing the NIEM Justice element augmentations are shown in example 4-64. Note that the PersonAugmentation
container element does not appear in the JSON message.

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 47 of 114

<nc:Person>
<nc:PersonBirthDate>
<nc:Date>2021-09-11</nc:Date>

"nc:Person": {
"nc:PersonBirthDate": {
"nc:Date": "2021-09-11"

</nc:PersonBirthDate> },
<nc:PersonName> "nc:PersonName": {
</nc:PersonName> +

<j:PersonAugmentation>
<j:PersonAdultIndicator>true</j:PersonAdultIndicator>
<j:PersonSightedIndicator>true</j:PersonSightedIndicator>
</j:PersonAugmentation>
</nc:Person>

"j:PersonAdultIndicator": true,
"j:PersonSightedIndicator": true

}

|
|
|
|
|
<nc:PersonFullName>John Doe</nc:PersonFullName> | "nc:PersonFullName": "John Doe"
|
|
|
|
|
|

Example 4-64: Element augmentation in XML and JSON messages

There is another way to augment an object or augmentation class with an element property in XSD, one that does not involve creating an
-augmentation type- or element. This is done by making an ordinary element property substitutable for the -augmentation point element-. For
example, the namespace http://example.com/Characters could augment nc:PersonType with a
PersonFictionalCharacterIndicator property via the XSD in example 4-65. The equivalent augmentation in CMF is also shown. (There
isno AugmentationIndex property in this CMF augmentation, because the -augmentation property- is not part of an-augmentation type-.)

<xs:element name="PersonFictionalCharacterIndicator"
type="niem-xs:boolean"

| <AugmentationRecord>
| <Property structures:ref="my:PersonFictionalCharacterIndicator"/>
substitutionGroup="nc:PersonAugmentationPoint"> | <Class structures:ref="nc:PersonType"/>
<xs:annotation> | <MinOccursQuantity>0</MinOccursQuantity>
<xs:documentation> | <MaxOccursQuantity>unbounded</MaxOccursQuantity>
True if a person is a character in a work of fiction. | </AugmentationRecord>
</xs:documentation>
</xs:annotation>
</xs:element>

Example 4-65: Augmenting a class with an element property in XSD

Example 4-66 shows an nc:PersonType object that is augmented with an element property.

<nc:Person>
<nc:PersonBirthDate>
<nc:Date>2021-09-11</nc:Date>
</nc:PersonBirthDate>
<nc:PersonName>
<nc:PersonFullName>John Doe</nc:PersonFullName>
</nc:PersonName>
<my:PersonFictionalCharacterIndicator>true</nc:PersonFictionalCharacterIndicator>
</nc:Person>

Example 4-66: Augmentation with an element property in XML

4.16.2.3 Augmenting every object class or association class with an element property

NIEM has two special augmentation points for global augmentations: structures:0bjectAugmentationPoint and
structures:AssociationAugmentationPoint . In order to augment every object or -association class- with an element property, a
namespace defines an -augmentation type- and element substitutable for one of those special augmentation points. For example, example 4-67
shows the XSD to augment every object class with the property my:PrivacyAssertion . (Replace "Object" with "Association" to instead
augment every -association class-.)

<xs:complexType name="ObjectAugmentationType'>
<xs:complexContent>
<xs:extension base="structures:AugmentationType'>
<Xs:sequence>
<xs:element ref="my:PrivacyAssertion"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:element name="ObjectAugmentation" type="my:ObjectAugmentationType" substitutionGroup="structures:0ObjectAugmentationPoint"/>

Example 4-67: Augmenting every object class with an element property in XSD

Global augmentation properties appear first in an XSD message. Example 4-68 shows an XML message with a message object containing a
global -augmentation property-.

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 48 of 114

<nc:Person>
<my:ObjectAugmentation>
<my:PrivacyAssertion>
<nc:Date>2023-08-05</nc:Date>
<my:PrivacyText>PUBLIC</my:PrivacyText>
</my:PrivacyAssertion>
</my:0bjectAugmentation>
<nc:PersonBirthDate>
<nc:Date>2021-09-11</nc:Date>
</nc:PersonBirthDate>
<nc:PersonName>
<nc:PersonFullName>John Doe</nc:PersonFullName>
</nc:PersonName>
</nc:Person>

Example 4-68: Global augmentation with an element property in XML

4.16.2.4 Augmenting a literal class with an element property in XSD

Datatypes and literal classes are represented as elements with simple content in XML messages. These elements may have attributes, but
may not have child elements. Therefore they cannot be augmented through substitution for an augmentation point. They are instead
augmented in CMF through AugmentationRecord objects, and in XSD through appinfo:Augmentation elements.

Question: How many element property augmentations can you add to a datatype?
Answer: Only one. After that, it is a literal class, not a datatype. (See §5.1)

Example 4-69 shows how ndex:PersonSexualOrientationCodeType may be augmented with the element property
my:PrivacyAssertion .

<AugmentRecord>
<Class structures:ref="ndex.PersonSexualOrientationCodeType"/>
<Property structures:ref="my.PrivacyAssertion"/>

| <appinfo:Augmentation

|

|
<MinOccursQuantity>0</MinOccursQuantity>

|

|

class="ndex:PersonSexualOrientationCodeType"
property="my:PrivacyAssertion"/>

<MaxOccursQuantity>1</MaxOccursQuantity>
</AugmentRecord>

Example 4-69: Augmenting a literal class with an element property

These augmentations appear in XML messages as reference attributes. A reference attribute has the same name as the corresponding
-augmentation property-, lower-cased, with a "Ref" suffix. For example, the reference attribute for my:PrivacyAssertion is
my:privacyAssertionRef .

A reference attribute contains a list of object references. Each referenced object is a value of the -augmentation property-. Example 4-70 shows
XML and JSON messages containing a -literal class- augmented with an element property.

<nc:Person>
<nc:PersonBirthDate>
<nc:Date>2021-09-11</nc:Date>
</nc:PersonBirthDate>
<nc:PersonName>
<nc:PersonFullName>John Doe</nc:PersonFullName>
</nc:PersonName>
<j:PersonSexualOrientationCode my:privacyAssertionRef="PRIVO1">UNKNOWN</j:PersonSexualOrientationCode>
</nc:Person>
<my:PrivacyAssertion structures:id="PRIVO1">
<nc:Date>2023-08-05</nc:Date>
<my:PrivacyText>RESTRICTED</my:PrivacyText>
</my:PrivacyAssertion>
"nc:Person": {
"nc:PersonBirthDate": {
"nc:Date": "2021-09-11"
}
"nc:PersonName": {
"nc:PersonFullName": "John Doe"
H
"j:PersonSexualOrientationCode": {
"ndex:PersonSexualOrientationCodeLiteral": "UNKNOWN",
"my:PrivacyAssertion": { "@id": "#PRIVO1" }
3
"my:PrivacyAssertion": {
"@id": "#PRIVO1"
"nc:Date": "2023-08-05",
"my:PrivacyText": "RESTRICTED"
}

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 49 of 114

Example 4-70: Reference attribute augmentation in XML and JSON

Augmenting every -literal class- with an element property is done by omitting the class and adding a global class code. Example 4-71 shows the
CMF and XSD to augment every -literal class: with my:PrivacyAssertion .

<AugmentRecord>
<Property structures:ref="my.PrivacyAssertion"/>
<MinOccursQuantity>0</MinOccursQuantity>

| <appinfo:Augmentation

|

|
<MaxOccursQuantity>1</MaxOccursQuantity>

|

|

property="my:PrivacyAssertion"
globalClassCode="LITERAL"/>

<GlobalClassCode>LITERAL</GlobalClassCode>
</AugmentRecord>

Example 4-71: Augmenting every literal class with an element property

4.17 LocalTerm

A -local term- is a word, phrase, acronym, or other string of characters that is used in the name of a namespace component, but that is not
defined in [OED], or that has a non-OED definition in this namespace, or has a word sense that is in some way unclear. An instance of the
LocalTerm class captures the namespace author's definition of such a -local term-. For example, the Justice domain namespace in the NIEM
model has a LocalTerm object defining the name "CLP" with documentation "Commercial Learners Permit".

Name Defi Card Ord Range

LocalTerm A data type for the meaning of a term that may appear within the name of a model
component.

TermName The name of the -local term-. 1 - | xs:token

DocumentationText A human-readable text definition of a data model component or term, or the documentation 0.1 - | TextType
of a namespace.

TermLiteral Text A meaning of a-local term- provided as a full, plain-text form. 0..1 - | xs:string

SourceURI A URI that is an identifier or locator for an originating or authoritative document defining a 0.+ - | xs:anyURI
-local term-.

SourceCitationText A plain text C|t'at'|on of, reference to, or bibliographic entry for an originating or authoritative 0.* - | xs:string
document defining a -local term-.

Table 4-72: Properties of the LocalTerm object class

A LocalTerm object is represented in XSD by a appinfo:LocalTerm element within xs:appinfo elementinthe xs:schema element.
Example 4-73 shows the representation of a LocalTerm object in CMF and XSD.

<LocalTerm>
<TermName>2D</TermName>
<TermLiteralText>Two-dimensional</TermLiteralText>
</LocalTerm>
<LocalTerm>
<TermName>3D</TermName>
<DocumentationText>Three-dimensional</DocumentationText>
</LocalTerm>
<LocalTerm>
<TermName>Test</TermName>
<DocumentationText>only for test purposes</DocumentationText>
<SourceURI>http://example.com/1 http://example.com/2</SourceURI>
<SourceCitationText>citation #1</SourceCitationText>
<SourceCitationText>citation #2</SourceCitationText>
</LocalTerm>
<xs:appinfo>
<appinfo:LocalTerm term="2D" literal="Two-dimensional"/>
<appinfo:LocalTerm term="3D" definition="Three-dimensional/>
<appinfo:LocalTerm term="Test" definition="only for test purposes" sourceURIs="http://example.com/1 http://example.com/2">
<appinfo:SourceText>citation #1</appinfo:SourceText>
<appinfo:SourceText>citation #2</appinfo:SourceText>
</appinfo:LocalTerm>
</xs:appinfo>

Example 4-73: Example LocalTerm objects in CMF and XSD

The following table shows the mapping between LocalTerm object representations in CMF and XSD.

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 50 of 114

CMF XSD

TermName appinfo:LocalTerm/@term

DocumentationText appinfo:LocalTerm/@definition

TermLiteralText appinfo:LocalTerm/@literal

SourceURI Each URIlin the appinfo:LocalTerm/@sourceURIs list
SourceCitationText appinfo:LocalTerm/appinfo:SourceText

Table 4-74: LocalTerm object properties in CMF and XSD

4.18 TextType

An instance of the TextType class combines a string property with a language property.

Definition
TextType A data type for a character string with a language code.
TextLiteral A literal value that is a character string. 1 - xs:string
lang A name of the language of a character string. 0..1 - xs:language

Table 4-75: Properties of the TextType object class

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 51 of 114

5. Data modeling patterns

This section is informative. It explains common patterns in NIEM models and messages.

5.1 Datatypes and literal classes

A model component can be a datatype in one-message model- and a class in another. This occurs when a message designer creates a subset
of a reused -literal class:, or augments a reused datatype.

Removing attribute properties from a reused -literal class- can turn it into a datatype. For example, nc:NumericType is a literal class in the
NIEM Core reference namespace, but in a subset can become a datatype in a message model. In the NIEM model, nc:NumericType has
one element property and one -attribute property-. Example 5-1 shows the class representation in CMF and XSD; example 5-2 shows an object
of the class in an XML and JSON message.

<Class structures:id="nc.NumericType'">
<Name>NumericType</Name>
<Namespace structures:ref="nc"
<ChildPropertyAssociation>
<DataProperty structures:ref="nc.NumericLiteral"/> </xs:extension>
<MinOccursQuantity>1</MinOccursQuantity> </xs:simpleContent>

| <xs:complexType name="NumericType'">

|

|

|

|

|
<MaxOccursQuantity>1</MaxOccursQuantity> | </xs:complexType>

|

|

|

|

|

|

|

<xs:simpleContent>
<xs:extension base="niem-xs:decimal'>
<xs:attribute ref="nc:toleranceNumeric" use="optional"/>

</ChildPropertyAssociation>
<ChildPropertyAssociation>
<DataProperty structures:ref="nc.toleranceNumeric"/>
<MinOccursQuantity>0</MinOccursQuantity>
<MaxOccursQuantity>1</MaxOccursQuantity>
</ChildPropertyAssociation>
</Class>

Example 5-1: A literal class in CMF and XSD

<my:Message> | "my:Message": {
<my :MaximumNumber nc:toleranceNumeric="2">7<my:MaximumNumber> | ""my :MaximumNumber": {
</my:Message> | "nc:NumericLiteral": "7",
| "nc:toleranceNumeric": "2"
[
|}

Example 5-2: Objects of a literal class in an XML and JSON message

If a message designer decides to reuse nc:NumericType , and to remove nc:toleranceNumeric from the class in his model subset, then
nc:NumericType becomes a datatype in the subset. Example 5-3 shows the CMF and XSD representations of that subset; example 5-4
shows the resulting data property in an XML and JSON message.

<Restriction structures:id="nc.NumericType"> | <xs:complexType name="NumericType'">
<Name>NumericType</Name> | <xs:simpleContent>
<Namespace structures:ref="nc" | <xs:extension base="niem-xs:decimal"/>
|
|

<RestrictionBase structures:ref="xs:decimal"/> </xs:simpleContent>
</Restriction> </xs:complexType>
Example 5-3: A restriction datatype in a CMF and XSD model subset
<my:Message> | "my:Message": {

<my :MaximumNumber>7<my :MaximumNumber> | "my :MaximumNumber": "7"
</my:Message> | 3

Example 5-4: A data property in an XML and JSON message

Going the other way, augmenting a reused datatype with an-attribute property- turns it into a -literal class-. For example,
nc:PersonUnionCategoryCodeType is a datatype in the NIEM model, and nc:PersonUnionCategoryCode is a data property with that
datatype. Example 5-5 shows the datatype representation in CMF and XSD; example 5-6 shows the data property in an XML and JSON
message.

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 52 of 114

<Restriction structures:id="nc.PersonUnionCategoryCodeType">
<Name>PersonUnionCategoryCodeType</Name>
<Namespace structures:ref="nc" xsi:nil="true"/>
<RestrictionBase structures:ref="xs.token" xsi:nil="true"/>
<Enumeration>
<Stringvalue>civil union</Stringvalue>
</Enumeration>

| <xs:complexType name="PersonUnionCategoryCodeType">
| <xs:simpleContent>
| <xs:restriction base="niem-xs:token">
| <xs:enumeration value="civil union"/>
| <xs:enumeration value="common law"/>
| <xs:enumeration value="domestic partnership"/>
| <xs:enumeration value="married"/>
<Enumeration> | <xs:enumeration value="unknown"/>
<StringValue>common law</StringValue> | </xs:restriction>
</Enumeration> | </xs:simpleContent>
<Enumeration> | </xs:complexType>
<StringValue>domestic partnership</StringValue>
</Enumeration>
<Enumeration>
<StringValue>married</StringValue>
</Enumeration>
<Enumeration>
<Stringvalue>unknown</Stringvalue>
</Enumeration>
</Restriction>

Example 5-5: A datatype in CMF and XSD

<nc:Person> | "nc:Person": {
<nc:PersonUnionCategoryCode>married</nc:PersonUnionCategoryCode> | ""nc:PersonUnionCategoryCode": "married"
</nc:Person> | 3}

Example 5-6: A data property in an XML and JSON message

A message designer might decide to augment nc:PersonUnionCategoryCodeType with metadata to indicate this information is sometimes
privileged. Doing so turns it into a -literal class- in his model subset. Example 5-7 shows the CMF and XSD representations of that subset;
example 5-8 shows the resulting object in an XML and JSON message.

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 53 of 114

<Restriction structures:id="nc.PersonUnionCategoryCodeSimpleType">
<Name>PersonUnionCategoryCodeSimpleType</Name>
<Namespace structures:ref="nc"/>
<RestrictionBase structures:ref="xs.token" xsi:nil="true"/
<Enumeration>
<Stringvalue>civil union</Stringvalue>
</Enumeration>
<Enumeration>
<StringValue>common law</StringValue>
</Enumeration>
<Enumeration>
<StringValue>domestic partnership</StringValue>
</Enumeration>
<Enumeration>
<StringValue>married</StringValue>
</Enumeration>
<Enumeration>
<Stringvalue>unknown</StringvValue>
</Enumeration>
</Restriction>
<DataProperty structures:id="nc.PersonCategoryCodelLiteral">
<Name>PersonUnionCategoryCodeLiteral</Name>
<Namespace structures:ref="nc"/>
<Datatype structures:ref="nc.PersonUnionCategoryCodeSimpleType/>
</DataProperty>
<Class>
<Name>PersonUnionCategoryCodeType</Name>
<Namespace structures:ref="nc"/>
<ChildPropertyAssociation>
<DataProperty structures:ref="nc.PersonCategoryCodeLiteral"/>
<MinOccursQuantity>1</MinOccursQuantity>
<MaxOccursQuantity>1</MaxOccursQuantity>
</ChildPropertyAssociation>
<ChildPropertyAssociation>
<DataProperty structures:ref="my.privileged"/>
<MinOccursQuantity>0</MinOccursQuantity>
<MaxOccursQuantity>1</MaxOccursQuantity>
<AugmentingNamespace>my</AugmentingNamespace>
</ChildPropertyAssociation>
</Class>
<xs:simpleType name="PersonUnionCategoryCodeSimpleType">
<xs:restriction base="xs:token">
<xs:enumeration value="civil union"/>
<xs:enumeration value="common law"/>
<xs:enumeration value="domestic partnership"/>
<xs:enumeration value="married"/>
<xs:enumeration value="unknown"/>
</xs:restriction>
</xs:simpleType>
<xs:complexType name="PersonUnionCategoryCodeType">
<xs:simpleContent>
<xs:extension base="nc:PersonUnionCategoryCodeSimpleType">
<xs:attribute ref="my:privileged"/>
<xs:attributeGroup ref="structures:SimpleObjectAttributeGroup"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>

Example 5-7: A literal class in a CMF and XSD model subset

<nc:Person>
<nc:PersonUnionCategoryCode my:privileged="true">
married
</nc:PersonUnionCategoryCode>
</nc:Person>

}

|
|
|
|
|
(I

Example 5-8: An object property with a code list class in an XML and JSON message

"nc:Person": {
"'nc:PersonUnionCategoryCode": {
"nc:PersonUnionCategoryCodelLiteral":
"my:privileged": "true"

"married",

The representation of a-literal class- is complex when compared to the datatype. The JSON message is likewise complicated. Best practice is

therefore to avoid augmenting a datatype whenever possible.

5.2 Metadata and augmentation

Metadata is data about data. The distinction is created by intended use. To the person editing an image, the creation timestamp is metadata,
something he does not need. To the person writing software to sort photos into creation order, the timestamp is the data for his code. One

man's metadata is another man's data.

fCopyright © OASIS Open 2025. All Rights Reserved.

f{fformatted_date} - Page 54 of 114

The NIEM model contains a number of classes and properties that are suitable for metadata representations, and any model designer is free to
invent new components for this purpose, as needed. A message designer may use these components in his message model, in the same way
as any other component. For example, a message designer might, within the components he creates, use nc:Metadata to representa
source of information and the level of confidence in that information. Example 5-9 shows an example of a message in which the designer chose
to use nc:Metadata as a property within his own my:ThingType class.

<my:Thing>
<my:ThingName>The Snark</my:ThingName>
<my:ThingLocation>Dismal Valley</my:ThingLocation>
<nc:Metadata>
<nc:ConfidencePercent>75</nc:ConfidencePercent>
<nc:SourceIDText>Bingo-7</nc:SourceIDText>

Example 5-9: Metadata properties used in a designer's own class

A message designer might also want to record source and confidence in a class reused from another namespace. This is done through
augmentation. Example 5-10 shows a message example in which nc:PersonType is augmented with nc:Metadata .

<nc:Person>
<nc:PersonBirthDate>
<nc:Date>2021-09-11</nc:Date>
</nc:PersonBirthDate>
<nc:PersonName>
<nc:PersonFullName>John Doe</nc:PersonFullName>

| "nc:Person": {

|

|

|

|

|
</nc:PersonName> [

|

|

|

|

|

|

"nc:PersonBirthDate": {
"nc:Date": "2021-09-11"

+

"nc:PersonName": {
"nc:PersonFullName": "John Doe"

<my:PersonAugmentation> "nc:Metadata": {
<nc:Metadata'"> "nc:SourceIDText": "Tango-7"
<nc:SourcelIDText>Tango-7</nc:SourceIDText>
</nc:Metadata>
</my:PersonAugmentation>
</nc:Person>

}
}

Example 5-10: Metadata object property augmenting a reused class

5.3 Relationship properties

The value of a property usually provides information about its parent object. For example, the value of nc:personNameCommentText in
example 5-11 tells us something about the parent object; namely, that this name is a silly name.

<nc:Person> "nc:Person": {

|
<nc:PersonName nc:personNameCommentText="This is a silly name"> | "nc:PersonName": {
<nc:PersonFullName>Bozo the Clown</nc:PersonFullName> | "nc:personNameCommentText": "This is a silly name"
</nc:PersonName> | "nc:PersonFullName": "Bozo the Clown"
</nc:Person> | 3
|

}

Example 5-11: Example of an ordinary property

Sometimes information about the parent object is not what is needed. For example, in example 5-12, the relationship property my:isSecret
is not telling us the name "Clark Kent" is a secret. That name appears on many bylines published by the Daily Planet! Instead, my:isSecret
is telling us something about the relationship between the name "Clark Kent" and the person object that also has the name "Superman”. That
relationship -- Superman's secret identity -- is the thing to be kept secret.

<nc:Person>
<nc:PersonName>

"nc:Person": {
"'nc:PersonName": [

]

|
|
<nc:PersonFullName>Superman</nc:PersonFullName> | {
</nc:PersonName> | "nc:PersonFullName": "Superman"
<nc:PersonName my:isSecret="true"> | o
<nc:PersonFullName>Clark Kent</nc:PersonFullName> | {
</nc:PersonName> | "nc:PersonFullName": "Clark Kent"
</nc:Person> | "@annotation": {
| "my:isSecret": "true"
| }
| }
|
|

}

Example 5-12: Example of a relationship property

A relationship property is represented in CMF by a Property object with Relationshipindicator equal to true; in XSD, by an attribute or element
declaration with appinfo:relationshipIndicator="true" . Example 5-13 shows the model representation of the relationship property
'my:isSecret” in CMF and XSD. (See also §14.2.9)

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 55 of 114

file:///mnt/c/Work/NIEM/niem-naming-design-rules/fig5-9

<DataProperty>
<Name>isSecret</Name>
<Namespace structures:ref="my"/>
<DocumentationText>True if the relationship with this property is a secret.</DocumentationText>
<RelationshipIndicator>true</RelationshipIndicator>
<AttributeIndicator>true</AttributeIndicator>
<Datatype structures:ref="xs:boolean"/>
</DataProperty>
<xs:attribute name="isSecret" appinfo:relationshipPropertyIndicator="true">
<xs:annotation>
<xs:documentation>True if the relationship with this property is a secret.</xs:documentation>
</xs:annotation>
</xs:attribute>

Example 5-13: Relationship property in CMF and XSD

5.4 Roles

An object may have more than one role or function within a message. For example, the object for a person may at different points in a message
represent the driver of a vehicle and a victim of a crash. The message data at each such point contributes different facts about the same object.
For example, facts about a driver might include his driver's license, while facts about a victim might include details of his injuries. NIEM 6 uses
object identifiers (see §14.2.3) so that different parts of a message can contribute facts to a single message object. Example 5-14 below shows
the XML and JSON representations of a message in which the values of three object properties () nc:Person, j:CrashDriver , and

j:CrashpPerson) all contribute facts about a single person.

<nc:Person structures:uri="#P01">
<nc:PersonName>
<nc:PersonFullName>Peter Wimsey</nc:PersonFullName>
</nc:PersonName>
</nc:Person>
<j:CrashVehicle>
<j:CrashDriver structures:uri="#P01">
<j:DriverLicense>
<j:DriverLicenseCardIdentification>
<nc:IdentificationID>A1234567</nc:IdentificationID>
</j:DriverLicenseCardIdentification>

"nc:Person": {
"@id": "#PO1"

}
+
"j:Crashvehicle": {

"@id": "#PE1",

</j:CrashDriver>
</j:CrashVehicle>
<j:CrashPerson structures:uri="#P0o1">
<j:CrashPersonInjury>
<nc:InjuryDescriptionText>Broken Arm</nc:InjuryDescriptionText>
<j:InjurySeverityCode>3</j:InjurySeverityCode>
</j:CrashPersonInjury>
</j:CrashPerson>

}
}
}
+
"j:CrashPerson": {
"@id": "#PO1"

"'nc:PersonName": {
"nc:PersonFullName":

"j:CrashDriver": {

"j:DriverLicense": {
"j:DriverLicenseCardIdentification": {

"j:CrashPersonInjury":
"nc:InjuryDescriptionText": "Broken Arm",

"Peter Wimsey"

{

"j:InjurySeverityCode": "3"

}
}

Example 5-14: Roles and object identifiers

|
|
|
|
|
|
|
|
|
|
|
</j:DriverLicense> | "nc:IdentificationID": "A1234567"
|
|
|
|
|
|
|
|
|
|
|

Earlier versions of NIEM used special role types (such as nc:RoleOfPersonType) for this purpose; see [NDR5], section 10.2.2.

5.5 Representation pattern

Model designers often need to have multiple representations for a single concept. For example, for a general concept of a point in time, there
are numerous base representations, and innumerable ways to combine them. Modelers need both a representation of the general concept a

point in time, plus a variety of concrete representations of that concept.

NIEM has the representation pattern to satisfy this need. An abstract property represents the concept, and a number of concrete subproperties
represent the various representations of that concept. For example, the NIEM model has the abstract property nc:DateRepresentation for
the concept of a date in time. That representation property has several subproperties, each defining a particular concrete representation of a

date. Example 5-15 shows some of those properties in CMF and XSD.

fCopyright © OASIS Open 2025. All Rights Reserved.

f{fformatted_date} - Page 56 of 114

<DataProperty structures:id="nc.DateRepresentation">
<Name>DateRepresentation</Name>
<Namespace structures:ref="nc" xsi:nil="true"/>
<DocumentationText>
A data concept for a representation of a date.
</DocumentationText>
<AbstractIndicator>true</AbstractIndicator>
</0ObjectProperty>

<DataProperty structures:id="nc.Date">
<Name>Date</Name>
<Namespace structures:ref="nc" xsi:nil="true"/>
<DocumentationText>A full date.</DocumentationText>
<SubPropertyOf structures:ref="nc.DateRepresentation" xsi:nil="true"/>
<Datatype structures:ref="xs.date" xsi:nil="true"/>
</DataProperty>

<DataProperty structures:id="nc.DateTime">
<Name>DateTime</Name>
<Namespace structures:ref="nc" xsi:nil="true"/>
<DocumentationText>
A full date and time.
</DocumentationText>

<xs:element name="DateRepresentation" abstract="true">
<xs:annotation>
<xs:documentation>
A data concept for a representation of a date.
</xs:documentation>
</xs:annotation>
</xs:element>

<xs:element name="Date" type='"niem-xs:date"
substitutionGroup="nc:DateRepresentation">
<xs:annotation>
<xs:documentation>A full date.</xs:documentation>
</xs:annotation>
</xs:element>

<xs:element name="DateTime" type='"niem-xs:dateTime"
substitutionGroup="nc:DateRepresentation">
<xs:annotation>
<xs:documentation>
A full date and time.
</xs:documentation>
</xs:annotation>
</xs:element>

<SubPropertyOf structures:ref="nc.DateRepresentation" xsi:nil="true"/>
<Datatype structures:ref="xs.dateTime" xsi:nil="true"/>
</DataProperty>

Example 5-15: The DateRepresentation pattern in CMF and XSD

Many classes in the NIEM model use nc:DateRepresentation for the concept of a point in time. For example, nc:PersonBirthDate has
the class nc:DateType , which uses nc:DateRepresentation . A message designer selects one or more concrete representations by
choosing subproperties for his NIEM model subset. For example, the model subset might contain only the subproperty nc:Date , in which
case nc:PersonBirthDate would be expressed only in terms of nc:Date . (See example 5-11.)

5.6 Container objects

All NIEM properties establish a relationship between the object holding the property and the value of the property. For example, an activity
object of type nc:ActivityType may have an property nc:ActivityDescriptionText . This property will be of the class nc:TextType
and represents a NIEM property owned by that activity object. An occurrence of this property within an activity object establishes a relationship
between the activity object and the text: the text is the description of the activity.

In a NIEM-conformant message, a property establishes a relationship between the object that contains it and the property's value. This
relationship between the object and the property may be semantically strong, such as the text description of an activity in the previous
example, or it may be semantically weak, with its exact meaning left unstated. In NIEM, the contained property involved in a weakly defined
semantic relationship is commonly referred to as a container property.

A container property establishes a weakly defined relationship with its parent object. For example, an object of type
nc:ItemDispositionType may have a container object nc:Item of the class nc:ItemType . The container object nc:Item does not
establish what relationship exists between the object of nc:ItemDispositionType and itself. There could be any of a number of possible
semantics between an object and the value of a container property. It could be a contained object, a subpart, a characteristic, or some other
relationship. The appearance of this container property inside the nc:ItemDispositionType object merely establishes that the disposition
has an item.

The name of the container property is usually based on the NIEM class that defines it: nc:PersonType uses a container property
nc:Person , while nc:ActivityType uses a container property nc:Activity . The concept of an property as a container property is a
notional one.

There are no formalized rules addressing what makes up a container property. A container property is vaguely defined and carries very little
semantics about its context and its contents. Accordingly, there is no formal definition of container properties in NIEM; the metamodel has no
special properties to represent a container.

The appearance of a container property within a NIEM class carries no additional semantics about the relationship between the property and
the parent class. The use of container properties indicates only that there is a relationship; it does not provide any semantics for interpreting
that relationship.

For example, the NIEM container property nc:Person has the NIEM class nc:PersonType . The use of the NIEM container property
nc:Person in a containing NIEM class indicates that a person has some association with the instances of the containing NIEM class. But
because the nc:Person container property is used, there is no additional meaning about the association of the person and the instance
containing it. While there is a person associated with the instance, nothing is known about the relationship except its existence.

The use of the Person container property is in contrast to a NIEM property named nc:AssessmentPerson , also of the NIEM class

nc:PersonType . When the NIEM property nc:AssessmentPerson is contained within an instance of a NIEM class, it is clear that the
person referenced by this property was responsible for an assessment of some kind, relevant to the exchange being modeled. The more
descriptive name, nc:AssessmentPerson , gives more information about the relationship of the person with the containing instance, as

fCopyright © OASIS Open 2025. All Rights Reserved.

f{fformatted_date} - Page 57 of 114

compared with the semantic-free implications associated with the use of the nc:Person container property.

When a NIEM model requires a new container property, it may define a new property with a concrete class and a general name, with general
semantics. Any model may define a container property when it requires one.

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 58 of 114

6. Conformance

This document defines conformance for namespaces, schema documents, models, and messages. These are the conformance targets for
NIEM; that is, these are the kinds of artifact for which conformance may be asserted. For each conformance target, this document specifies a
set of conformance claims, called rules, which must be fulfilled by a conforming artifact. Rules are normative, and are written with the
capitalized [RFC 2119] keywords MUST, MUST NOT, etc.

NIEM does not define conformance for applications, systems, databases, or tools. It is therefore impossible for any of these to properly claim
"NIEM conformance". However, they may properly claim to generate conforming messages or to employ conforming models.

NIEM defines conformance with the rules in this document, but it does not define compliance. The distinction is based on assessment authority:
Anyone may assess conformance with rules. Compliance is assessed by an authority who can compel change or withhold approval. The
authoritative assessment in a compliance evaluation is out of scope for NIEMOpen.

The rules in this document are designed to be used with or without the component definitions in the NIEM model. These rules define
conformance to the NIEM architecture. Conformance to the NIEM model is a separate thing, and is not specified by this document.

6.1 Conformance targets

The conformance targets specified in this document are listed below. The rules for each conformance target appear in the given sections.

6.1.1 Namespace conformance target

A conforming namespace is a namespace that satisfies all of the applicable rules in this document. The rules for this conformance target apply
to both the CMF and XSD representations of a namespace. (In CMF, this is a Namespace object in a model file. In XSD, this is a-schema
document-.) The rules for all conforming namespaces are in:

o Section 7: Rules for model components
o Section 8: Rules for namespaces
6.1.2 Schema document conformance target

A conforming schema document is a -schema document- that satisfies all of the applicable rules in this document. The rules for this
conformance target apply only to the XSD representation of a namespace. The rules for conforming schema documents are found in:

o Section 9.1: Rules for the NIEM profile of XSD

o Section 9.2: Rules for type definitions

o Section 9.3: Rules for attribute and element declarations
o Section 9.4: Rules for adapters and external components
o Section 9.5: Rules for proxy types

o Section 9.6: Rules for augmentations

o Section 9.7: Rules for machine-readable annotations

« Section 9.8: Rules for reference schema documents

« Section 9.9: Rules for extension schema documents

6.1.3 Model conformance target
A conforming model fulfils all of the rules insection 10. There are two representations for NIJEM models, CMF and XSD.

o Model file: A model file is a -message- that conforms to the CMF -message type-. Additional rules for this conformance target are in
section 10.1.

« Schema document set. A conforming schema document set is a -schema document set- that fulfils all applicable rules insection 10.
Additional rules for this conformance target are in section 10.2.

6.1.4 Message conformance target
« Message type and message format Rules for these conformance targets are in section 11
« XML message: Rules applying to a message in XML format are in section 12

« JSON message: Rules applying to a message in JSON format are in section 13

6.2 Conformance target assertions

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 59 of 114

It is often helpful for an artifact to contain an assertion of the kind of thing it is supposed to be. These assertions can inform both people and
tools. The Conformance Targets Attribute Specification [CTAS] defines an attribute that, when it appears in an XML document, asserts the
document conforms to one or more conformance targets. Specifically, this is the effective conformance targets attribute, which is the first
occurrence (in document order) of the attribute
{https://docs.oasis-open.org/niemopen/ns/specification/conformanceTargets/6.0/}conformanceTargets .

For XSD, NIEMOpen makes use of[CTAS] to indicate whether a -schema document: is intended to represent a reference, extension, or subset
namespace. For example, a -reference schema document- contains the conformance target assertion shown in example 6-1 below:

<xs:schema
targetNamespace="https://docs.oasis-open.org/niemopen/ns/model/niem-core/6.0/"
xmlns:ct="https://docs.oasis-open.org/niemopen/ns/specification/conformanceTargets/6.0/"
xmlns:nc="https://docs.oasis-open.org/niemopen/ns/model/niem-core/6.0/"
ct:conformanceTargets="https://docs.oasis-open.org/niemopen/ns/specification/NDR/6.0/#ReferenceSchemaDocument"
version="1"
xml:lang="en-US">

Example 6-1: Conformance target assertion in XSD

In CMF, the conformanceTargetURI property indicates whether a Namespace object represents a reference, extension, or subset
namespace. For example, the Namespace object equivalent to the namespace in example 6-1 is shown below:

<Namespace structures:id="nc">
<NamespaceURI>https://docs.oasis-open.org/niemopen/ns/model/niem-core/6.0/</NamespaceURI>
<NamespacePrefixText>nc</NamespacePrefixText>
<DocumentationText>NIEM Core.</DocumentationText>
<ConformanceTargetURI>

https://docs.oasis-open.org/niemopen/ns/specification/NDR/6.0/#ReferenceSchemaDocument

</ConformanceTargetURI>
<ArchitectureVersionName>6</ArchitectureVersionName>
<NamespaceVersionText>1</NamespaceVersionText>
<NamespacelanguageName>en-US</NamespacelLanguageName>

</Namespace>

Example 6-2: Conformance target assertion in CMF

6.3 Conformance testing
Automated testing of most rules is possible. Some rules require human evaluation.
¢ Many rules for -schema documents- may be tested by the Schematron rules provided in TODO.

« Messages must be valid when assessed against the schema of their -message format- (see §3.7.2). Many of the rules applicable to all
messages are encoded into these schemas when the schemas are generated from the -message type- by NIEMOpen developer tools;
see https://github.com/niemopen/ntac-admin/tree/main/tools.

« Rules in this document without automated testing are marked with [Manual]; for example:

Rule 7-42: Words or synonyms for the words within a data definition MUST NOT be reused as terms in the corresponding component
name if those words dilute the semantics and understanding of, or impart ambiguity to, the entity or concept that the component
represents. [Manual]

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 60 of 114

https://github.com/niemopen/ntac-admin/tree/main/tools

7. Rules for model components

These rules apply to model components in both the CMF and XSD representations of conforming namespaces. In CMF, the representation is a
Namespace object in a CMF model file. In XSD, it is a -schema document-.

« Rules for names of components appear insection 7.1
« Rules for documentation of components appear insection 7.2
+ Rules for namespaces appear in section 8

7.1 Rules for component names

Data component names must be understood easily both by humans and by machine processes. These rules improve name consistency by
restricting characters, terms, and syntax that could otherwise allow too much variety and potential ambiguity. These rules also improve
readability of names for humans, facilitate parsing of individual terms that compose names, and support various automated tasks associated
with dictionary and controlled vocabulary maintenance.

These rules apply to all namespaces. In a CMF representation, they apply to the Name property of a Component object. In an XSD
representation, they apply to the {}name attribute of a complex type definition, element declaration, or attribute declaration.

Rule 7-1: A namespace MUST NOT include two components with the same uncased name.

For example, a namespace may not include both the attribute commentText and the element CommentText . This would cause problems in
case-insensitive environments.

7.1.1 Rules based on kind of component
Rule 7-2: Class and Datatype components MUST have a name ending in "Type"; Property components MUST NOT.

This rule immediately distinguishes Property components from Class and Datatype components. In an XSD representation, it also avoids
naming collisions between type definitions and element/attribute declarations.

Rule 7-3: A component MUST NOT have a name ending in "Augmentation”, "AugmentationPoint", or "AugmentationType".

XSD components with these names appear only as augmentation components in the XSD representation of a model. These XSD components
are not themselves model components.

7.1.1.1 Rules for names of Class components
Rule 7-4: An -adapter class- MUST have a name ending in "AdapterType"; all other components MUST NOT.
Rule 7-5: An -association class- MUST have a name ending in "AssociationType"; all other components MUST NOT.

Rule 7-6: A -literal class- with aliteral property- that has a -code list datatype- MUST have a name ending in "CodeType"; all other literal classes
MUST NOT.

These rules immediately distinguish special Class components from ordinary. Rule 7-6 handles an unusual case in XSD. A -code list- in XSD is

represented as a complex type with simple content. This usually corresponds to a Datatype component; however, when that complex type
definition includes attribute properties, then it corresponds to a Class component.

7.1.1.2 Rules for names of Datatype components

Rule 7-7: A component with a name ending in "SimpleType" MUST be a Datatype.

A Datatype with a name ending in "SimpleType" is sometimes needed for a -literal property-, or for a member type in a List or Union component.
Rule 7-8: A Datatype object with a name that ends in "CodeSimpleType" MUST be a -code list datatype-.

Rule 7-9: A -code list datatype- MUST have a name ending in "CodeType" or "CodeSimpleType"; all other Datatype components MUST NOT.

The component representing a -code list- is usually a Datatype object. However, when the XSD representation of a code list includes attributes,
it is a Class object. (See §5.1)

7.1.1.3 Rules for names of Property components

Rule 7-10: A Property object having an Abstractindicator property with the value true SHOULD have a name ending in "Abstract" or
"Representation”; all other components SHOULD NOT.

A property name ending in "Abstract" reminds message designers that it cannot be used directly but must be specialized. A property name
ending in "Representation” is an instance of the representation pattern described in section 5.5.

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 61 of 114

Rule 7-11: A Property with an -association class- MUST have a name ending in "Association"; all other components MUST NOT.

Rule 7-12: A Property with a Class or Datatype that represents a -code list: MUST have a name ending in "Code"; all other components MUST
NOT.

Rule 7-13: The -literal property- of a-literal class- MUST have a name ending in "Literal"; all other components MUST NOT.

Component names ending in "Literal" only occur in the CMF representation of a -literal class-. They do not appear in the XSD representation of
a model.

Rule 7-14: A Property that is a -reference attribute property- property MUST have a name ending in "Ref"; all other components MUST NOT.

7.1.2 Rules for composition of component names

Rule 7-15: Except as otherwise provided in this document, the name of a model component MUST be composed of words from the English
language, using the prevalent U.S. spelling, as provided by the Oxford English Dictionary [OED]. [Manual]

The English language has many spelling variations for the same word. For example, American English program has a corresponding British
spelling programme. This variation has the potential to cause interoperability problems when XML components are exchanged because of the
different names used by the same elements. Providing users with a dictionary standard for spelling will mitigate this potential interoperability
issue.

NIEM supports internationalization in several ways. NIEM allows (but does not encourage) component names that are not from the English
language in extension schema documents.

Rule 7-16: The name of a model component MUST be entirely composed of specified characters.

« Upper-case letters (A-2)
o Lower-case letters (a-z)
« Digits (0-9)

o Underscore ()

o Hyphen (-)

o Period (.)

Other characters, such as unicode characters outside the ASCII character set, are explicitly prohibited from the name of an XML Schema
component defined by the schema.

Rule 7-17: The name of a model component MUST use the camel case formatting convention.

Camel case is the convention of writing compound words or phrases with no spaces and an initial lowercase or uppercase letter, with each
remaining word element beginning with an uppercase letter. UpperCamelCase is written with an initial uppercase letter, and lowerCamelCase
is written with an initial lowercase letter.

Rule 7-18: The name of an -attribute property- MUST begin with a lowercase character.
Rule 7-19: The name of a model component that is not an -attribute property- MUST begin with an uppercase character.

Rule 7-20: The characters hyphen (-), underscore (_) MUST NOT appear in a component name unless used as a separator between parts of a
word, phrase, or value, which would otherwise be incomprehensible without the use of a separator. The character period (.) MUST NOT appear
in a component name unless as a decimal within a numeric value, or unless used as a separator between parts of a word, phrase, or value,
which would otherwise be incomprehensible without the use of a separator. [Manual]

Names of standards and specifications, in particular, tend to consist of series of discrete numbers. Such names require some explicit separator
to keep the values from running together.

7.1.3 General component naming rules from ISO 11179-5

Names are a simple but incomplete means of providing semantics to data components. Data definitions, structure, and context help to fill the
gap left by the limitations of naming. The goals for data component names should be syntactic consistency, semantic precision, and simplicity.
In many cases, these goals conflict and it is sometimes necessary to compromise or to allow exceptions to ensure clarity and understanding.
To the extent possible, NIEM applies [ISO 11179-5] to construct NIEM data component names.

Rule 7-21: A noun used as a term in the name of an XML Schema component MUST be in singular form unless the concept itself is plural.
[Manual]

Rule 7-22: A verb used as a term in the name of an XML Schema component MUST be used in the present tense unless the concept itself is
past tense. [Manual]

Rule 7-23: Articles, conjunctions, and prepositions MUST NOT be used in NIEM component names except where they are required for clarity
or by standard convention. [Manual]

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 62 of 114

Articles (e.g., a, an, the), conjunctions (e.g., and, or, but), and prepositions (e.g., at, by, for, from, in, of, to) are all disallowed in NIEM
component names, unless they are required. For example, PowerOfAttorneyCode requires the preposition. These rules constrain slight
variations in word forms and types to improve consistency and reduce potentially ambiguous or confusing component names.

7.1.4 Property naming rules from ISO 11179-5

The set of NIEM data components is a collection of data representations for real-world objects and concepts, along with their associated
properties and relationships. Thus, names for these components would consist of the terms (words) for object classes or that describe object
classes, their characteristic properties, subparts, and relationships.

Rule 7-24: Except as specified elsewhere in this document, the name of a property object MUST be formed by the composition of object class
qualifier terms, object class term, property qualifier terms, property term, representation qualifier terms, and representation term, as detailed in
Annex A of [ISO 11179-5]. [Manual]

For example, the NIEM component name AircraftFuselageColorCode is composed of the following:

« Object class term = Aircraft
o Qualifier term = Fuselage

o Property term = Color

« Representation term = Code

7.1.4.1 Object-class term
Rule 7-25: The object-class term of a NIEM component MUST consist of a term identifying a category of concepts or entities. [Manual]

NIEM adopts an object-oriented approach to representation of data. Object classes represent what [ISO 11179-5] refers to as things of interest
in a universe of discourse that may be found in a model of that universe. An object class or object term is a word that represents a class of real-
world entities or concepts. An object-class term describes the applicable context for a NIEM component.

The object-class term indicates the object category that this data component describes or represents. This term provides valuable context and
narrows the scope of the component to an actual class of things or concepts. An example of a concept term is Activity. An example of an entity
term is Vehicle.

7.1.4.2 Property term
Rule 7-26: A property term MUST describe or represent a characteristic or subpart of an entity or concept. [Manual]

Objects or concepts are usually described in terms of their characteristic properties, data attributes, or constituent subparts. Most objects can
be described by several characteristics. Therefore, a property term in the name of a data component represents a characteristic or subpart of
an object class and generally describes the essence of that data component. It describes the central meaning of the component.

7.1.4.3 Qualifier terms

Rule 7-27: Multiple qualifier terms MAY be used within a component name as necessary to ensure clarity and uniqueness within its namespace
and usage context. [Manual]

Rule 7-28: The number of qualifier terms SHOULD be limited to the absolute minimum required to make the component name unique and
understandable. [Manual]

Rule 7-29: The order of qualifiers MUST NOT be used to differentiate components. [Manual]

Very large vocabularies may have many similar and closely related properties and concepts. The use of object, property, and representation
terms alone is often not sufficient to construct meaningful names that can uniquely distinguish such components. Qualifier terms provide
additional context to resolve these subtleties. However, swapping the order of qualifiers rarely (if ever) changes meaning; qualifier ordering is
no substitute for meaningful terms.

7.1.4.4 Representation term
The representation terms for a property name serve several purposes in NIEM:
1. It can indicate the style of component. For example, types are clearly labeled with the representation term Type.
2. It helps prevent name conflicts and confusion. For example, elements and types may not be given the same name.

3. ltindicates the nature of the value carried by element. Labeling elements and attributes with a notional indicator of the content eases
discovery and comprehension.

The valid value set of a data element or value domain is described by the representation term. NIEM uses a standard set of representation
terms in the representation portion of a NIEM-conformant component name. Table 6-1, Property representation terms, below, lists the primary
representation terms and a definition for the concept associated with the use of that term. The table also lists secondary representation terms

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 63 of 114

that may represent more specific uses of the concept associated with the primary representation term.

Primary Secondary
Representation Representation Definition
Term Term
Amount - A number of monetary units specified in a currency where the unit of currency is explicit or implied.
BinaryObject - A set of finite-length sequences of binary octets.
Graphic A diagram, graph, mathematical curves, or similar representation
Picture A visual representation of a person, object, or scene
Sound A representation for audio
Video A motion picture representation; may include audio encoded within
Code A ch.ar.acter string (i.e., Iettlers., figures, and sympols) that for brevity, language independence, or
precision represents a definitive value of an attribute.
DateTime A particular point in the progression of time together with relevant supplementary information.
Date A continuous or recurring period of time, of a duration greater than or equal to a day.
Time A particular point in the progression of time within an unspecified 24-hour day.
Duration An amount of time; the length of a time span.
D A character string to identify and distinguish uniquely one instance of an object in an identification

scheme from all other objects in the same scheme together with relevant supplementary information.

A string of characters used to identify (or name) a resource. The main purpose of this identifier is to
URI enable interaction with representations of the resource over a network, typically the World Wide Web,
using specific protocols. A URI is either a Uniform Resource Locator (URL) or a Uniform Resource
Name (URN). The specific syntax for each is defined by [RFC 3986].

Indicator A list of two mutually exclusive Boolean values that express the only possible states of a property.

Measure A numeric value determined by measuring an object along with the specified unit of measure.

Numeric information that is assigned or is determined by calculation, counting, or sequencing. It does

Numeric
not require a unit of quantity or unit of measure.
Value A result of a calculation.
Rate A relative speed of change or progress.
Percent A representation of a unitless ratio, expressed as parts of a hundred, with 100 percent representing a
ratio of 1to 1.
Quantity A counted number of non-monetary units possibly including fractions.
Text - A character string (i.e., a finite sequence of characters) generally in the form of words of a language.
Name A word or phrase that constitutes the distinctive designation of a person, place, thing, or concept.
List A sequence of values. This representation term is used in tandem with another of the listed
representation terms.
An element that may represent a concept, rather than a concrete property. This representation term
Abstract . . f ;
may be used in tandem with another of the listed representation terms.
Representation An element that acts as a placeholder for alternative representations of the value of a type

Table 7-1: Property representation terms

Rule 7-30: If any word in the representation term is redundant with any word in the property term, one occurrence SHOULD be deleted.
[Manual]

This rule, carried over from 11179, is designed to prevent repeating terms unnecessarily within component names. For example, this rule
allows designers to avoid naming an element PersonFirstNameName.

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 64 of 114

Rule 7-31: The name of a-data property- SHOULD use an appropriate representation term as found in table 6-1, Property representation
terms. [Manual]

Rule 7-32: The name of an -object property- that corresponds to a concept listed in table 6-1, Property representation terms, SHOULD use a
representation term from that table. [Manual]

Rule 7-33: The name of an object property that does not correspond to a concept listed in table 6-1, Property representation terms SHOULD
NOT use a representation term. [Manual]

7.1.5 Acronyms, abbreviations, and jargon

Rule 7-34: A component name SHOULD use the abbreviations shown in the table below. [Manual]

Abbreviation Full Meaning

ID Identifier

URI Uniform Resource Identifier

Rule 7-35: A -local term- MAY be used in the name of a component within its namespace. [Manual]
A -local term- is a word, phrase, acronym, or other string of characters that is defined within a namespace by a LocalTerm object.

Rule 7-36: In CMF, a LocalTerm object MUST have a DocumentationText property, or a TermLiteralText property, or both. In XSD, a
LocalTerm element MUST have a @definition attribute, ora @literal attribute, or both.

7.2 Rules for component documentation

NIEM models are composed of data components for the purpose of information exchange. A major part of defining data models is the proper
definition of the contents of the model. What does a component mean, and what might it contain? How should it be used?

Reference namespaces and extension namespaces provide the authoritative definition of the components they contain. These definitions
include:

1. The structural definition of each component, expressed as CMF objects or XSD schema components. Where possible, meaning is
expressed in this way.

2. A text definition of each component, describing what the component means. The term used in this specification for such a text definition is
data definition.

A -data definition- is the DocumentText property of a CMF object, or the content of the first occurrence of the element xs:documentation
that is an immediate child of an occurrence of an element xs:annotation thatis an immediate child of an XSD schema component.

A -documented component- is a CMF object or XSD schema component that has an associated data definition.

7.2.1 Rules for documented components

Rule 7-37: In CMF, a Namespace object MUST be a -documented component:. In XSD, the xs:schema element MUST be a -documented
component:.

Rule 7-38: In CMF, a Component object MUST be a -documented component:. In XSD, a type definition, element declaration, or attribute
declaration MUST be a -documented component-

Rule 7-39: In CMF, a Facet object with a FacetCategoryCode of enumeration MUST be a -documented component-. In XSD, an
xs:enumeration facet MUST be a -documented component:-.

Rule 7-40: In CMF, a Facet object with a FacetCategoryCode of pattern MUST be a-documented component-. In XSD, an xs:pattern
facet MUST be a -documented component-.

Rule 7-41: In CMF, the language name for the first instance of the DocumentationText property in any Namespace or Component object
MUST be en-US . In XSD, the first occurrence of xs:documentation within xs:annotation MUST be within the scope of an occurrence
of xml:lang with a value of en-US .

A model file or -schema document: always contains data definitions in US English. It may contain equivalent data definitions in other languages.

7.2.2 Rules for data definitions

Rule 7-42: Words or synonyms for the words within a -data definition- MUST NOT be reused as terms in the corresponding component name if
those words dilute the semantics and understanding of, or impart ambiguity to, the entity or concept that the component represents. [Manual]

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 65 of 114

Rule 7-43: An object class MUST have one and only one associated semantic meaning (i.e., a single word sense) as described in the
definition of the component that represents that object class. [Manual]

Rule 7-44: An object class MUST NOT be redefined within the definitions of the components that represent properties or subparts of that entity
or class. [Manual]

Data definitions should be concise, precise, and unambiguous without embedding additional definitions of data elements that have already
been defined once elsewhere (such as object classes). [ISO 11179-4] says that definitions should not be nested inside other definitions.
Furthermore, a data dictionary is not a language dictionary. It is acceptable to reuse terms (object class, property term, and qualifier terms) from
a component name within its corresponding definition to enhance clarity, as long as the requirements and recommendations of [ISO 11179-4]
are not violated. This further enhances brevity and precision.

Rule 7-45: A -data definition- SHOULD NOT contain explicit representational or data typing information such as number of characters, classes
of characters, range of mathematical values, etc., unless the very nature of the component can be described only by such information. [Manual]

A component definition is intended to describe semantic meaning only, not representation or structure. How a component with simple content
is represented is indicated through the representation term, but the primary source of representational information should come from the XML
Schema definition of the types themselves. A developer should try to keep a component's -data definition- decoupled from its representation.

7.2.3 Data definition rules from ISO 11179-4
These rules are adopted from [ISO 11179-4], Information technology — Metadata registries: Formulation of data definitions

Rule 7-46: Each data definition MUST conform to the requirements for data definitions provided by [ISO 11179-4] Section 5.2, Requirements;
namely, a data definition MUST: [Manual]

« be stated in the singular

« state what the concept is, not only what it is not

o be stated as a descriptive phrase or sentence(s)

« contain only commonly understood abbreviations

* be expressed without embedding definitions of other data or underlying concepts

Rule 7-47: Each data definition SHOULD conform to the recommendations for data definitions provided by [ISO 11179-4] Section 5.2,
Recommendations; namely, a data definition SHOULD: [Manual]

« state the essential meaning of the concept

« be precise and unambiguous

« be concise

« be able to stand alone

« be expressed without embedding rationale, functional usage, or procedural information
« avoid circular reasoning

« use the same terminology and consistent logical structure for related definitions

« be appropriate for the type of metadata item being defined

7.2.4 Data definition opening phrases

In order to provide a more consistent voice across NIEM, a model built from requirements from many different sources, component data
definitions should begin with a standard opening phrase, as defined below.

7.2.4.1 Opening phrases for properties
These rules apply to Property objects in CMF, and to element and attribute declarations in XSD.
Rule 7-48: The -data definition- for an abstract property SHOULD begin with the standard opening phrase "A data concept...".

Rule 7-49: The -data definition- for a property that has an -association type- and is not abstract SHOULD begin with the standard opening
phrase "An (optional adjectives) (relationship|association)...".

Rule 7-50: The -data definition- for a property with a date representation term SHOULD begin with the standard opening phrase "(A|An)
(optional adjectives) (date|month|year)...".

Rule 7-51: The -data definition- for a property with a quantity representation term SHOULD begin with the standard opening phrase "An
(optional adjectives) (countjnumber)...".

Rule 7-52: The -data definition- for a property with a picture representation term SHOULD begin with the standard opening phrase "An (optional
adjectives) (image|picture|photograph)”.

Rule 7-53: The -data definition- for a property with an indicator representation term SHOULD begin with the standard opening phrase "True if
...; false (otherwiselif)...".

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 66 of 114

Rule 7-54: The -data definition- for a property with an identification representation term SHOULD begin with the standard opening phrase "
(A]JAn) (optional adjectives) identification...".

Rule 7-55: The -data definition- for a property with a name representation term SHOULD begin with the standard opening phrase "(A|An)
(optional adjectives) name...".

Rule 7-56: The -data definition- for a property SHOULD begin with the standard opening phrase "(A]An)".

7.2.4.2 Opening phrases for classes
These rules apply to Class objects in CMF, and to complex type definitions in XSD.

Rule 7-57: The -data definition- for an -association class- SHOULD begin with the standard opening phrase "A data type for (a relationship | an
association)...".

Rule 7-58: The -data definition- for a class SHOULD begin with the standard opening phrase "A data type..."

7.3 Rules for specifications of components

Rule 7-59: A Restriction object MUST NOT contain two Facet objects with a FacetCategoryCode of enumeration and the same FacetValue.

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 67 of 114

8. Rules for namespaces

8.1 Rules for properties of namespaces
Rule 8-1: The namespace MUST have an identifier, which MUST match the grammar syntax <absolute-URI> as defined by [RFC 3986]. In

CMF, the namespace identifier is the value of the NamespaceURI property in a Namespace object. In XSD, the namespace identifier is the
value of @targetNamespace inthe <xs:schema> element.

Rule 8-2: The namespace identifier MUST be a URI that is owned by the namespace author, as defined in [webarch] §2.2.2.1 URI ownership.
[Manual]

For example, the authors of a message specification must not choose a namespace URI beginning with
https://docs.oasis-open.org/niemopen/ns/model/ , because ownership of that URI has been delegated to the authors of the NIEM
model.

Rule 8-3: A namespace identifier that is not a URN SHOULD end in the slash (/') character.

Rule 8-4: A namespace identifer that is a URL SHOULD end in the pattern /version/ , where version is a version identifier. A namespace
identifier that is a URN SHOULD end in the pattern :version .

Examples:

https://docs.oasis-open.org/niemopen/ns/model/niem-core/6.0/
http://example.com/myNS/1.0.1/
http://example.com/yourNS/1.1.1-alpha.7/
urn:nato:stanag:0000:specname:1.5.1

Rule 8-5: The version identifier in a namespace identifier SHOULD conform to the [SemVer] specification. [Manual]

In semantic versioning, version numbers and the way they change convey meaning about the underlying code and what has been modified
from one version to the next.

Rule 8-6: The namespace MUST have a defined prefix, which MUST match the grammar syntax <NCName> as defined by [XML
Namespaces].

In CMF, the prefix is the value of the NamespacePrefix property in a Namespace object. In XSD, the prefix is defined by a namespace binding
for the target namespace URI.

Rule 8-7: The namespace MUST have a version, which MUST NOT be empty. In CMF, the version is the value of the NamespaceVersionText
property in a Namespace object. In XSD, the version is the value of @version inthe <xs:schema> element.

Rule 8-8: The namespace MUST have a default language, which MUST be a well-formed language tag as defined by [RFC 4646]. In CMF, the

default language is the value of the NamespaceLanguageName property in a Namespace object. In XSD, the default language is the value of
@xml:lang inthe <xs:schema> element.

8.2 Rules for reference namespaces

Rule 8-9: A -reference namespace- MUST assert the conformance target identifier https://docs.oasis-open.org/niemopen/ns/specif
ication/NDR/6.0/#ReferenceSchemabDocument ; all other namespaces MUST NOT. In CMF, this is a value of the ConformanceTargetURI
property in the Namespace object. In XSD, this is an -effective conformance target identifier- of the schema document (see §6.2).

The conformance target identifier ends in "ReferenceSchemaDocument” instead of "ReferenceNamespace" for historical reasons.

Rule 8-10: In CMF, a Class object with a Namespace that is a -reference namespace- MUST NOT contain an AnyPropertyAssociation
property. In XSD, the -schema document- for the -reference namespace- MUST NOT contain the element xs:any or xs:anyAttribute .

Wildcards are permitted in extension namespaces, but not in reference namespaces or in subsets ofreference namespaces.

Rule 8-11: In CMF, if a Class object or an ObjectProperty object in a -reference namespace- contains a ReferenceCode property, then that
property MUST have a value of ANY . In XSD, if a type definition or an element declaration in a -reference namespace- has the attribute
@appinfo:referenceCode , then that attribute MUST have a value of ANY .

To promote reuse, object properties defined inreference namespaces and extension namespaces are always referenceable. In a subset of
these namespaces, message designers may specify that some properties must be referenced via IDREF, or by URI, or must appear inline.

Rule 8-12: A component that is used in a -reference namespace- MUST be defined in a-reference namespace-.

8.3 Rules for extension hamespaces

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 68 of 114

https://www.w3.org/TR/webarch/#uri-ownership

Rule 8-13: An -extension namespace- MUST assert the conformance target identifier
https://docs.oasis-open.org/niemopen/ns/specification/NDR/6.0/#ExtensionSchemaDocument ; all other namespaces MUST
NOT. In CMF, this is a value of the ConformanceTargetURI property in the Namespace object. In XSD, this is an -effective conformance target

identifier- of the schema document (see §6.2).

Rule 8-14: In CMF, if a Class object or an ObjectProperty object in an -extension namespace- contains a ReferenceCode property, then that
property MUST have a value of ANY . In XSD, if a type definition or an element declaration in an -extension namespace- has the attribute
@appinfo:referenceCode , then that attribute MUST have a value of ANY .

8.4 Rules for subset namespaces

Rule 8-15: A -subset namespace- must assert the conformance target identifier
https://docs.oasis-open.org/niemopen/ns/specification/NDR/6.0/#SubsetSchemaDocument . In CMF, this is a value of the
ConformanceTargetURI property in the Namespace object. In XSD, this is an -effective conformance target identifier- of the schema document
(see §6.2).

Rule 8-16: A representation of a -reference namespace: or -extension namespace- with the same namespace identifier as the-subset
namespace- MUST exist. [Manual]

It is helpful when a message specification includes the representation of the-reference namespace- or -extension namespace:-, as this
facilitates automated validation of certain rules; however, this is not required, so long as the canonical representation exists somewhere.

Rule 8-17: A subset namespace MUST NOT extend the valid range of a component in the corresponding -reference namespace- or -extension
namespace:. [Manual]

Rule 8-18: With the exception of an -augmentation property-, a -subset namespace: MUST NOT contain a component not found in the
corresponding -reference namespace- or -extension namespace-. [Manual]

Rule 8-19: The -data definition- of a component in a-subset namespace: MUST NOT be different than the-data definition- of the component in
its -reference namespace- or -extension namespace-. [Manual]

The previous three rules together make up thesubset rule: Any data that is valid for a -subset namespace- must also be valid for its -reference
namespace- or -extension namespace-, and must have the same meaning.

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 69 of 114

9. Rules for schema documents

This section contains rules that apply only to the XSD representation of NIEM models; that is, to reference schema documents, extension
schema documents, and subset schema documents.

Rule 9-1: The schema document MUST be a conformant document as defined by [CTAS-v3.0].

Rule 9-2: The -document element- of the XML document, and only the-document element-, MUST own an attribute
{https://docs.oasis-open.org/niemopen/ns/specification/conformanceTargets/6.0/}conformanceTargets .

9.1 Rules for the NIEM profile of XSD

The W3C XML Schema Language provides many constructs that allow a developer to represent a data model in many different ways.
However, a number of these constructs are not permitted within NIEM-conformant schemas. Many of these constructs provide capability that is
not currently needed within NIEM. Some of these constructs create problems for interoperability, with tool support, or with clarity or precision of
data model definition. The rules in this section establish a profile of XML Schema for NIEM-conformant schemas by forbidding use of the
problematic constructs.

Note that external schema documents do not need to obey the rules set forth in this section. So long as schema components from external

schema documents are adapted for use with NIEM according to the modeling rules in section 9.4: Rules for adapters and external components,
they may be used as they appear in the external standard, even if the schema components themselves violate the rules for NIEM-conformant
schemas.

Rule 9-3: The XSD representation of a namespace MUST be a -schema document:, as defined by [XML Schema Structures].
Rule 9-4: The -document element- of the XSD representation of a namespace MUST be xs:schema .
Rule 9-5: A -schema document- MUST NOT contain any of the following elements:

e Xs:notation

e xs:all

e Xs:unique

e Xxs:key

e Xxs:keyref

e Xs:group

e Xxs:attributeGroup
e Xxs:redefine

e Xxs:include

Rule 9-6: A schema component MUST NOT have an attribute {}base with a value of any of these types:

e xs:ID

e Xs:IDREF

e XS:IDREFS

e Xs:anyType

e Xs:anySimpleType

e XS:NOTATION

e XS:ENTITY

e XS:ENTITIES

« any type in the XML namespace http://www.w3.0rg/XML/1998/namespace

Rule 9-7: A schema component MUST NOT have an attribute {}itemType with any of the following values:

e xs:ID

e XS:IDREF

e Xs:anySimpleType
e XS:ENTITY

Rule 9-8: A schema component MUST NOT have an attribute {}memberTypes with any of the following values:

e Xxs:ID

e XsS:IDREF

e XS:IDREFS

e Xs:anySimpleType
e XS:ENTITY

e XS:ENTITIES

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 70 of 114

Rule 9-9: A schema component MUST NOT have an attribute {}type with any of the following types:

e Xs:ID

e XS:IDREF

e Xs:anySimpleType
e XS:ENTITY

e XS:ENTITIES

Rule 9-94 also forbids the type xs:IDREFS for all schema components other thanreference attribute properties.
Rule 9-10: A complex type definition MUST NOT have mixed content.

Mixed content allows the mixing of data tags with text. Languages such as XHTML use this syntax for markup of text. NIEM-conformant
schemas define XML that is for data exchange, not text markup. Mixed content creates complexity in processing, defining, and constraining
content. Well-defined markup languages exist outside NIEM and may be used with NIEM data, and so external schema documents may include
mixed content and may be used with NIEM.

Rule 9-11: A complex type definition MUST have a xs:complexContent ora xs:simpleContent child element

XML Schema provides shorthand to defining complex content of a complex type, which is to define the complex type with immediate children
that specify elements, or other groups, and attributes. In the desire to normalize schema representation of types and to be explicit, NIEM
forbids the use of that shorthand.

Rule 9-12: The base type of a complex type with complex content MUST have complex content.

This rule addresses a peculiarity of the XML Schema definition language, which allows a complex type to be constructed using
xs:complexContent, and yet is derived from a complex type that uses xs:simpleContent. These rules ensure that each type has the content
style indicated by the schema.

Rule 9-13: An untyped element or an element of type xs:anySimpleType MUST be abstract.

Untyped element declarations act as wildcards that may carry arbitrary data. By declaring such types abstract, NIEM allows the creation of type
independent semantics without allowing arbitrary content to appear in XML instances.

Rule 9-14: An element type MUST NOT be in the XML Schema namespace or the XML namespace.
Rule 9-15: An element type that is not xs:anySimpleType MUST NOT be a simple type.

Rule 9-16: An attribute declaration MUST have a type.

Rule 9-17: An element declaration MUST NOT have an attribute {}default or {}fixed .

Rule 9-18: An element xs:sequence MUST have a minOccurs and maxOccurs of 1.

Rule 9-19: An element xs:choice MUST be a child of xs:sequence .

Rule 9-20: An element xs:choice MUST have a minOccurs and maxOccurs of 1.

Rule 9-21: An XML comment SHOULD NOT appear in the schema.

Since XML comments are not associated with any specific XML Schema construct, there is no standard way to interpret comments. XML
Schema annotations should be preferred for meaningful information about components. NIEM specifically defines how information should be
encapsulated in NIEM-conformant schemas via xs:annotation elements. Comments do not correspond to any metamodel object.

Rule 9-22: A child of element xs:documentation MUST be text or an XML comment.
Rule 9-23: An element xs:import MUST have an attribute {}namespace .

An import that does not specify a namespace is enabling references to components without namespaces. NIEM requires that all components
have a defined namespace. It is important that the namespace declared by a schema be universally defined and unambiguous.

Rule 9-24: An element xs:import MUST specify a-schema document:, which MUST be a local resource.

The -schema document- may be specified by a {}schemaLocation attribute in the xs:import element, or by XML Catalog resolution of the
{}namespace attribute, or both. Requiring a local resource ensures that the component definitions are known and fixed. Forbidding the use of
a remote resource eliminates certain security vulnerabilities.

9.2 Rules for XSD types

This section provides rules for type definitions in the XSD representation of a model. A type definition in XML Schema can create a complex
data type - a type for elements with child elements - with xs:complexType). It can also create a simple data type, a type for elements with a
literal value, with xs:simpleType .

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 71 of 114

Rule 9-25: A type definition that does not define a -proxy type- MUST have a name ending in "Type"; all other XSD components MUST NOT.

Use of the representation term Type immediately identifies XML types in a NIEM-conformant schema and prevents naming collisions with
corresponding XML elements and attributes. The exception for proxy types ensures that simple NIEM-compatible uses of base XML Schema
types are familiar to people with XML Schema experience. (See §9.5).

Rule 9-26: A simple type definition MUST have a name ending in "SimpleType"; all other XSD components MUST NOT.

Specific uses of type definitions have similar syntax but very different effects on data definitions. Schemas that clearly identify complex and
simple type definitions are easier to understand without tool support. This rule ensures that names of simple types end in "SimpleType".

Rule 9-27: A complex type definition MUST be a Class component, a Datatype component, or a -proxy type-.
Rule 9-28: An element xs:sequence MUST be a child of xs:extension .
Rule 9-29: A type definition MUST be top-level.

All XML Schema top-level types (children of the document element) are required by XML Schema to be named. By requiring these
components to be top level, they are forced to be named and are globally reusable.

Rule 9-30: A complex type definition with complex content MUST be an object type, an -association type-, an -adapter type-, or an
-augmentation type-.

The rules in this document use the name of a type as the key indicator of the type's category. This makes the rules much simpler than doing a
deep examination of each type (and its base types) to identify its category. For complex types, the names follow a pattern:

« Name ends with AdapterType — type represents an-adapter class-. (see Rule 7-4)

« Name ends with AssociationType — type represents an-association class-. (see Rule 7-5)
+ Name ends with AugmentationType — type is an-augmentation type-.

o Otherwise — type is the XSD representation of anobject class.

Rule 9-31: A type definition that represents an -adapter class- MUST be derived from structures:AdapterType .

Rule 9-32: A type definition that represents an -association class- MUST be derived from structures:AssociationType or from another
-association class-.

Rule 9-33: A type definition that is an -augmentation type- MUST be derived from structures:AugmentationType .

Rule 9-34: A type with complex content that does not represent an -adapter class:, an -association class:, or an-augmentation type- MUST be
derived from structures:0ObjectType or from another object type.

Rule 9-35: A complex type definition with simple content MUST include structures:SimpleObjectAttributeGroup .

Rule 9-36: The base type definition of a type definition MUST have the target namespace or the XML Schema namespace or a namespace
that is imported as conformant.

Rule 9-37: An attribute or element reference MUST have the target namespace or a namespace that is imported as conformant.
Rule 9-38: An attribute group reference MUST be structures:SimpleObjectAttributeGroup .

The use of attribute groups is restricted in aconforming schema document. The only attribute group defined by NIEM for use in conformant
schemas is structures:SimpleObjectAttributeGroup . This attribute group provides the attributes necessary for identifiers and
references.

Rule 9-39: The item type of a list simple type definition MUST have a target namespace equal to the target namespace of the XML Schema
document within which it is defined, or a namespace that is imported as conformant by the -schema document- within which it is defined.

Rule 9-40: Every member type of a union simple type definition MUST have a target namespace that is equal to either the target namespace of

the XML Schema document within which it is defined or a namespace that is imported as conformant by the -schema document- within which it
is defined.

9.3 Rules for attribute and element declarations

Rule 9-41: The name of an element declaration or attribute declaration MUST NOT end in "Literal".
Literal properties appear only in the CMF representation of a-literal class-.

Rule 9-42: An attribute declaration or element declaration MUST be top-level.

Rule 9-43: An element declaration MUST NOT have a simple type.

Rule 9-44: The type definition of an attribute or element declaration MUST have a target namespace that is the target namespace, or a

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 72 of 114

namespace that is imported as conformant.
Rule 9-45: An element substitution group MUST have either the target namespace or a namespace that is imported as conformant.
Rule 9-46: An attribute declaration or element declaration MUST NOT have a type from the -structures namespace-.

Rule 9-47: The attribute declaration of a -reference attribute property- MUST have type xs:IDREFS ; all other attribute and element
declarations MUST NOT.

Reference attribute properties are a special form of object reference. (See §14.2.10.)

9.4 Rules for adapters and external components

Rule 9-48: An xs:import elementimporting an -external schema document- MUST own the attribute
appinfo:externalImportIndicator with avalue of true.

An -external schema document- is any schema document that is not

« a-reference schema document-, or

« an -extension schema document-, or

« asubset schema document, or

« a schema document that has the -structures namespace- as its target namespace, or
« a schema document that has the XML namespace as its target namespace.

There are a variety of commonly used standards that are represented in XML Schema. Such schemas are generally not NIEM-conformant.
NIEM-conformant schemas may reference components defined by these external schema documents.

A schema component defined by an external schema document may be called an external component. A NIEM-conformant type may use
external components in its definition. There are two ways to integrate external components into a NIEM-conformant schema:

« An -adapter class- may be constructed from externally-defined elements and attributes. A goal of this method is to represent, as a single
unit, a set of data that embodies a single concept from an external standard.

o Atype that is not an-adapter type-, and which is defined by an-extension schema document- or subset schema document, may
incorporate an externally-defined attribute.

Rule 9-49: An xs:import elementimporting an -external schema document- MUST be a -documented component-.

A NIEM-conformant schema has well-known documentation points. Therefore, a schema that imports a NIEM-conformant namespace need not
provide additional documentation for the imported namespace. However, when an external schema document is imported, appropriate
documentation must be provided on the xs:import element. This ensures that documentation for all external schema documents will be both
available and accessible in a consistent manner.

Rule 9-50: An -adapter type- definition MUST be a complex type definition with complex content that extends structures:0ObjectType , and
that uses xs:sequence as its top-level compositor.

An -adapter type- is a NIEM-conformant type that adapts external components for use within NIEM. An -adapter type- creates a new class of
object that embodies a single concept composed of external components. A NIEM-conformant schema defines an-adapter type-.

An -adapter type- should contain the information from an external standard to express a complete concept. This expression should be
composed of content entirely from an external schema document. Most likely, the -external schema document- will be based on an external
standard with its own legacy support.

In the case of an external expression that is in the form of model groups, attribute groups, or types, additional elements and type components
may be created in an external schema document, and the -adapter type- may use those components.

In normal (conformant) type definitions, a reference to an attribute or element is a reference to a -documented component-. Within an -adapter
type-, the references to the attributes and elements being adapted are references to undocumented components. These components must be
documented to provide comprehensibility and interoperability. Since documentation made available by nonconformant schemas is undefined
and variable, documentation of these components is required at their point of use, within the conformant schema.

Rule 9-51: An element reference that appears within an -adapter type- MUST have a target namespace that is imported as external.
Rule 9-52: An -adapter type- definition MUST NOT be a base type definition.

Rule 9-53: An -external attribute- use MUST be a documented component with a non-empty data definition.

Rule 9-54: An attribute use schema component MUST NOT have an attribute declaration with an ID type.

NIEM schemas use structures:id to enable references between components. Each NIEM-defined complex type in a reference or

extension schema document must incorporate a definition for structures:id . [XML] Section 3.3.1, Attribute Types entails that a complex
type may have no more than one ID attribute. This means that an -external attribute- use must not be an ID attribute.

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 73 of 114

The term "attribute use schema component" is defined by [XML Schema Structures] Section 3.5.1, The Attribute Use Schema Component.
Attribute type ID is defined by [XML] Section 3.3.1, Attribute Types.

Rule 9-55: An -external attribute- use MUST be a documented component with a non-empty data definition.

9.5 Rules for proxy types
Rule 9-56: The XSD declaration of a -proxy type- MUST have the same name as the simple type it extends.

A -proxy type- is an XSD complex type definition with simple content that extends one of the simple types in the XML Schema namespace with
structures:SimpleObjectAttributeGroup ; for example:

<xs:complexType name="string">
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attributeGroup ref="structures:SimpleObjectAttributeGroup"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>

A -proxy type- is not a model component. It is a convenience complex type definition wrapper for a simple type in the XML Schema namespace;
for example, niem-xs:token is a proxy type wrapper for xs:token . Unlike other complex type definitions, proxy types have the same local
name as the builtin simple type. This is done to make conformant schemas more understandable to people that are familiar with the names of
the XML Schema namespace simple types.

Rule 9-57: A proxy type MUST have the designated structure. It MUST use xs:extension . It MUST NOT use xs:attribute . It MUST
include exactly one xs:attributeGroup reference, which must beto structures:SimpleObjectAttributeGroup .

9.6 Rules for augmentations

Rule 9-58: The XSD definition of an -augmentation type- MUST have a name ending in "AugmentationType"; all other XSD components MUST
NOT.

Rule 9-59: The XSD declaration of an -augmentation element- MUST have a name ending in "Augmentation”; all other XSD components MUST
NOT.

Rule 9-60: The XSD declaration of an -augmentation point element- MUST have a name ending in "AugmentationPoint"; all other XSD
components MUST NOT.

Rule 9-61: The -data definition- for an -augmentation point element- SHOULD begin with standard opening phrase "An augmentation point...".

Rule 9-62: The -data definition- for an -augmentation element- SHOULD begin with the standard opening phrase "Supplements..." or "Additional
information about...".

Rule 9-63: The -data definition- for an -augmentation type- SHOULD begin with the standard opening phrase "A data type (that supplements|for
additional information about)...".

Rule 9-64: A type definition that is an -association type- or an -object type- MUST have exactly one -augmentation point element-.

Rule 9-65: The name of the -augmentation point element- within an -association type- or an -object type- MUST be the same as the complex
type name, with the suffix "Type" replaced by "AugmentationPoint".

For example, the -augmentation point element- for an -object type- named FooType must be named FooAugmentationPoint .

Rule 9-66: A -schema document- containing an element declaration for an-augmentation point element- MUST also contain a complex type
definition for its augmented base type.

For example, a -schema document- with an element declaration for FooAugmentationPoint must also contain a complex type definition for
FooType .

Rule 9-67: An -augmentation point element- MUST have no type.

Rule 9-68: An -augmentation point element- MUST NOT have a substitution group.

Rule 9-69: An -augmentation point element- MUST only be referenced by its base type.

For example, the FooAugmentationPoint element must not be referenced by any type other than FooType .

Rule 9-70: An -augmentation point element- particle MUST have attribute minOccurs equal to 0 and attribute maxOccurs set to unbounded.

Rule 9-71: An -augmentation point element- particle MUST be the last element occurrence in the content model of its augmentable type.

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 74 of 114

Rule 9-72: The name of an -augmentation element- MUST be the same as the name of the augmented type definition, with the suffix "Type"
replaced with "Augmentation”.

For example, an -augmentation element- substitutable for PersonAugmentationPoint must be named PersonAugmentation .

Rule 9-73: The declaration of an -augmentation element- MUST have a type that is an-augmentation type-; all other element declarations
MUST NOT.

Rule 9-74: The declaration of an -augmentation element- MUST be a member of a substitution group headed by an -augmentation point
element:; all other element declarations MUST NOT.

Rule 9-75: A schema document MUST NOT contain two element declarations that are substitutable for the same -augmentation point element-.

Rule 9-76: A complex type definition MUST NOT have an element use of an -augmentation element- declaration, or an element declaration that
is in the substitution group of an augmentation point element declaration.

Augmentation elements do not correspond to a model component, and must not be used as a property in any class.
Rule 9-77: A schema document MUST NOT contain two element declarations with the same -augmentation type-.

For example, a schema document may not contain

<xs:element name="PersonAugmentation" type="my:ReusableAugmentationType" ...>
<xs:element name="OrganizationAugmentation" type="my:ReusableAugmentationType" ...>

Rule 9-78: The name of an -augmentation type- MUST be the same as the name of the augmented type definition, with the suffix "Type"
replaced with "AugmentationType".

For example, an -augmentation type- for nc:PersonType must be named PersonAugmentationType .

Rule 9-79: The definition of an -augmentation type- MUST NOT contain the schema component xs:any or xs:anyAttribute .

9.7 Rules for machine-readable annotations

NIEM defines a single namespace that holds components for use in NIEM-conformant schema application information, represented by the URI
https://docs.oasis-open.org/niemopen/ns/model/appinfo/6.0/ . This namespace is referred to as the -appinfo namespace-.

Rule 9-80: An attribute in the -appinfo namespace- MUST be owned by an element with a namespace name
http://www.w3.0rg/2001/XMLSchema .

Rule 9-81: A child of element xs:appinfo MUST be an element, a comment, or whitespace text.

Rule 9-82: An element that is a child of xs:appinfo MUST have a namespace name.

Rule 9-83: An element that is a descendent of xs:appinfo MUST NOT have the XML Schema namespace.

Rule 9-84: A schema component that has an attribute appinfo:deprecated with a value of true MUST be a deprecated component.

Rule 9-85: When the element appinfo:LocalTerm appears in a-schema document:, it MUST be application information on an element
Xs:schema .

9.8 Rules for reference schema documents

Rule 9-86: A -reference schema document- MUST NOT have an attribute {}final .

Rule 9-87: A simple type constraining facet in a -reference schema document- MUST NOT have an attribute {}fixed .

Rule 9-88: A -reference schema document- MUST NOT contain the attribute {}block or {}blockDefault .

Rule 9-89: A -reference schema document- MUST NOT contain the attribute {}final or {}finalDefault .

Rule 9-90: An element declaration in a -reference schema document- MUST have the {nillable} property with a value of true.

Properties in a reference or extension namespace are always referenceable, in order to maximize reuse. Message designers may make some
properties un-referenceable in a namespace subset.

Rule 9-91: A -reference schema document- MUST NOT contain the element xs:choice .
Rule 9-92: A -reference schema document- MUST NOT contain the element xs:any or xs:anyAttribute .

Rule 9-93: An -external attribute- use within a -reference schema document- MUST be in an-adapter type-.

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 75 of 114

9.9 Rules for extension schema documents

Rule 9-94: An element declaration in an -extension schema document- MUST have the {nillable} property with a value of true.

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 76 of 114

10. Rules for models

These rules apply to both the CMF and XSD representations of a model.
Rule 10-1: Every namespace in a model MUST be one of the following:

« a conforming namespace; that is, a -reference namespace-, -extension namespace-, or -subset namespace:-
« an external namespace

« the -structures namespace-

o the XML namespace, http://www.w3.0rg/XML/1998/namespace

o the XSD namespace, http://www.w3.0rg/2001/XMLSchema .

The -appinfo namespace:- is not part of a NIEM model. It provides schema components for use in the XSD representation of a NIEM model.
Rule 10-2: A model MUST NOT contain two namespaces with the same prefix.

In a NIEM model there is always a one-to-one match between namespace prefix and namespace URI.

10.1 Rules for model files
Rule 10-3: A model MUST NOT contain two namespaces with the same identifier.

This is impossible in an XSD representation of a model. It must not be done in CMF.

10.2 Rules for schema document sets
A -schema document set- is a collection of -schema documents- that together are capable of validating an XML document.
Rule 10-4: The -schema documents- in a-schema document set- MUST be exactly those determined by the following procedure:

« Beginning with the empty set

« Add one or more specified initial-schema documents-

o As each -schema document- is added, find each <xs:import> element contained therein, and add the -schema document: specified by
that element to the set.

Schema assembly is underspecified in [XML Schema]. But a specification that defines message conformance in terms of schema validation
must have some way to establish the schema used to assess validity. Otherwise no one can be certain what conforms. This rule establishes
the needed certainty.

Most schema document sets are established by a single-extension schema document:, with all other needed-schema documents- brought in
by xs:import elements. But it is also allowable to list every document as an initial schema document. Or to have a single initial document
with no namespace, containing nothing but xs:import elements for each document in the set.

Rule 10-5: The members of a -schema document set- MUST NOT contain two xs:import elements that have the same {}namespace
attribute but specify different -schema documents-.

XML Schema permits conflicting imports, but the result is underspecified, and can cause errors that are very hard to detect and diagnose.

Rule 10-6: The members of a -schema document set- MUST NOT contain two xs:import elements with the same namespace but different
values for appinfo:externalImportIndicator .

Rule 10-7: There MUST be a one-to-one match between namespace prefix and namespace URI among all the members of a -schema
document set-.

XML Schema permits a schema document set to contain

¢ schema document A containing xmlns:foo="http://example.com/MyFoo/"
« schema document B containing xmlns:bar="http://example.com/MyFoo/"
¢ schema document C containing xmlns:foo="http://example.com/MyBar/"

This is not allowed in NIEM XSD. There is always a one-to-one match between namespace prefix and URI in CMF.

Rule 10-8: A -schema document set- MUST be complete; that is, it MUST contain the definition of every schema component referenced by any
component defined by the schema set.

A -schema document set- defines an XML Schema that may be used to validate an XML document. This rule ensures that a schema document
set under consideration contains definitions for everything that it references; it has everything necessary to do a complete validation of XML
documents, without any unresolved references. Note that some tools may allow validation of documents using partial schemas, when
components that are not present are not exercised by the XML document under validation. Such a schema does not satisfy this rule.

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 77 of 114

Rule 10-9: A -schema document set- MUST include the -structures namespace- as it is defined in Appendix B of this document.

This rule further enforces uniform and consistent use of the NIEM structures namespace, without addition. Users are not allowed to insert
types, attributes, etc. that are not specified by this document.

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 78 of 114

11. Rules for message types and message formats

Rule 11-1: A -message type- MUST declare the initial property of conforming -messages:.

This document does not specify any particular syntax for the declaration.

Rule 11-2: The -schema- for a -message format- MUST validate exactly those -messages- that conform to the format's -message type-. [Manual]

This is the only conformance rule for the XML Schema in an XML message format, or the JSON Schema in a JSON message format.
NIEMOpen provides free and open-source software to generate conforming schemas from the message type. Developers are also free to
construct those schemas by hand.

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 79 of 114

12. Rules for XML messages

Rule 12-1: An XML -message- MUST be an XML document that contains one instance of the element for the message property specified by its
‘message type- (that is, the element for the message object), and all of the message content MUST be a descendent of that element.

The element for the initial property is often the-document element:, but this is not necessarily so. An XML message may be embedded within
an XML document; for example, as a payload within a SOAP response.

Rule 12-2: An XML -message- MUST be schema-valid as assessed against the -schema document set- that represents the -message model- of
a -message type-.

This rule should not be construed to mean that XML validation must be performed on all XML instances as they are served or consumed; only
that the XML instances validate if XML validation is performed. The XML Schema component definitions specify XML documents and element
information items, and the instances should follow the rules given by the schemas, even when validation is not performed.

Rule 12-3: An XML -message- MUST NOT contain an attribute that is schema-valid only by virtue of an xs:anyAttribute elementin the
-structures namespace-.

The -schema document- for the -structures namespace- contains xs:anyAttribute elements for the purpose of attribute augmentation. This
permits a message designer to augment his subset of a -reference schema document- or -extension schema document- with particular attribute
properties, while still following the subset rule. (See §4.16.2.1)

The xs:anyAttribute elements in the-structures namespace- are not intended to allow any attribute within any element in a conforming
message. That is prohibited by this rule.

Rule 12-4: An element in an XML message MUST NOT have the attribute structures:id if it represents a property with an effective
reference code of NONE .

The reference code of a property or class is the value of the ReferenceCode property in CMF, or the appinfo:referenceCode attribute in
XSD. The effective reference code of a property is that reference code if specified; otherwise the effective reference code of the property's
class. The effective reference code of a class is its reference code if specified; otherwise the effective reference code of its parent class if one
exists; otherwise NONE .

By default, all message objects appear inline. Model designers must specify the object properties and classes that they want to also appear
through an object reference. (See §14.2.3)

Rule 12-5: An element in an XML message MUST NOT have the attribute structures:ref if it represents a property with an effective
reference code of ANYURI , RELURI , or NONE .

Rule 12-6: An element in an XML message MUST NOT have the attribute structures:uri if it represents a property with an effective
reference code of IDREF or NONE .

Rule 12-7: An element in an XML message MUST NOT have more than one attribute thatis structures:id, structures:ref,or
structures:uri .

Rule 12-8: The value of an attribute structures:ref in an element representing a model property MUST match the value of an attribute
structures:id of some element in the XML message.

Although many attributes with ID and IDREF semantics are defined by many vocabularies, for consistency, within a NIEM XML document any
attribute structures:ref mustreferto an attribute structures:id, and not any other attribute.

Rule 12-9: Every element that has an attribute structures:ref MUST have a referencing element validation root that is equal to the
referenced element validation root.

The term "validation root" is defined by [XML Schema Structures] Section 5.2, Assessing Schema-Validity. It is established as a part of
validity assessment of an XML document.

NIEM supports type-safe references; that is, references using structures:ref and structures:id must preserve the type constraints
that would apply if nested elements were used instead of a reference. For example, an element of type nc:PersonType must always refer to
another element of type nc:PersonType , or a type derived from nc:PersonType , when using structures:ref to establish the
relationship.

Rule 12-10: An element that is the target of a structures:ref object reference MUST have a type that is validly derived from the type of the
referencing element.

The term validly derivedis as established by [XML Schema Structures], subsection Schema Component Constraint: Type Derivation OK
(Complex) within Section 3.4.6, Constraints on Complex Type Definition Schema Components.

This rule requires that the type of the element pointed to by a structures:ref attribute must be of (or derived from) the type of the reference
element.

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 80 of 114

Rule 12-11: An element that is the target of a -reference attribute property- MUST have a type with a name that is the QName of the property,
with the local part capitalized, and the trailing "Ref" replaced with "Type", or a derived type.

For example, an element that is the target of nc:metadataRef must have the type nc:MetadataType , or a derived type.

Rule 12-12: The value of an attribute with or derived from xs:anyURI MUST satisfy the grammar syntax <URI-reference> as defined by
[RFC 3986].

XML Schema validation does not always check the validity of URI values. Examples of valid and invalid URI attributes:

structures:uri="http://example.com/Person/223/" <--valid
structures:uri="#boogala" <-- valid
structures:uri="boogala" <-- invalid

Rule 12-13: An element MUST NOT contain two instances of the same -augmentation element-.

For example, a message must not contain

<nc:Person>
<j:PersonAugmentation>...
<j:PersonAugmentation>...
</nc:Person>

even though this is schema-valid. Instead, those augmentation properties must be consolidated into a single j:PersonAugmentation
element.

Rule 12-14: An element with xsi:nil="true" MUST have the attribute structures:ref or structures:uri.
The attribute xsi:nil can only be used to create an object reference. It cannot be used to omit mandatory content.
Rule 12-15: A descendent of the element for the message object MUST NOT have the attribute xml:base .

xml:base is allowed on the top-level element in the message; see §14.2.3.

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 81 of 114

13. Rules for JSON messages
Rule 13-1: A JSON message MUST be valid according to the grammar syntax <object> as defined by [RFC 8259].

According to the JSON specification, a valid JSON text can be an object, array, number, string, or literal name. Only the first of these is allowed
as a NIEM JSON message.

Rule 13-2: A JSON message MUST conform to the JSON-LD specification in [JSON-LD].
Rule 13-3: A JSON message MUST be valid when assessed against the schema of its -message format-.

The schema for a JSON -message format- is expressed in JSON Schema, and validates exactly those messages that conform to the -message
type-. (see rule 11-2.)

Rule 13-4: A JSON message MUST have an embedded context, remote context, or context via HTTP header. The context MUST map each
namespace prefix in the -message model- to its corresponding namespace URI. The URL for a remote context MUST be an -absolute URI-.

Embedded context, remote context, and context via HTTP header are defined in [JSON-LD] §3.1: The Context.
For example, the JSON message inexample 3-2 has a context that maps the prefixes nc and msg to their corresponding URls.

Rule 13-5: The name in a name-value mapping within a JSON object MUST be a JSON-LD keyword, or a term that expands to the URI of a
property in the -message model-.

For example:

"@context": {

"nc": "https://docs.oasis-open.org/niemopen/ns/model/niem-core/6.0/",
"pname": "nc:PersonName"},

"nc:Person": { valid, expands to htips://docs.oasis-open.org/niemopen/ns/model/niem-core/6.0/Person
"@id": "#JD", valid, JSON-LD keyword
"pname": { valid, expands to https://docs.oasis-open.org/niemopen/ns/model/niem-core/6.0/PersonName

"foo:FullName": "John Doe" invalid, no mapping for "foo" prefix

}

}

Rule 13-6: Two JSON objects with the same value for the @id key MUST represent the same message object.

Rule 13-7: A JSON object representing the value of a model Property object with an effective reference code of NONE MUST NOT contain the
@id key.

Rule 13-8: Two JSON objects with the same value for the @id key MUST represent message objects having the same class or common
class ancestor.

For example, the following NIEM JSON is valid, because nc:Item and nc:Equipment have the same class nc:ItemType .

"nc:Item": {
"@id": "#ITEM7",
"nc:ItemQuantity": 7

}

"nc:Equipment": {
"@id": "#ITEM7",
"nc:EquipmentName": "Pump"

}

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 82 of 114

https://www.w3.org/TR/json-ld11/#the-context

14. Interpretation of NIEM data

NIEM is a framework for developer-level specifications of data. The primary purpose of a NIEM-based data specification is to establish a
common understanding among developers, so that they can write software that correctly handles the shared data. Much of that common
understanding comes from the natural language documentation in a NIEM model. For example, consider the documentation of the

nc:PersonName object property shown below:

<ObjectProperty structures:id="nc.PersonName'>

<Name>PersonName</Name>
_n

<Namespace structures:ref="nc"/>
<DocumentationText>

by which a person is known.
</DocumentationText>

<Class structures:ref="nc.PersonNameType"/>

</0ObjectProperty>

|
|
|
|
A combination of names and/or titles
|
|
|
|

<xs:annotation>
<xs:documentation>

</xs:documentation>
</xs:annotation>
</xs:element>

<xs:element name="PersonName" type='"nc:PersonNameType">

A combination of names and/or titles
by which a person is known.

Example 14-1: Natural language documentation in CMF and XSD

In addition to the definition of individual model components, the meaning of NIEM data is also expressed through the arrangement of nested
objects in a message, which expresses a relationship between the parent and child. For example, the meaning of the two equivalent messages
in example 3-2 (reproduced below) is described in table 14-2.

<msg:Request
xmlns:nc="https://docs.oasis-open

<msg:RequestedItem>

<nc:ItemName>Wrench</nc:ItemName>
<nc:ItemQuantity>10</nc:ItemQuantity>

</msg:RequestedItem>
</msg:Request>

.org/niemopen/ns/model/niem
xmlns:msg="http://example.com/ReqRes/1.0/">
<msg:RequestID>RQO01</msg:RequestID>

{

"@context": {
o'
"msg":

}

"msg:Request": {

"'msg:RequestedItem": {

"https://docs.oasis-open.org/niemopen/ns/model/niem-
"http://example.com/ReqRes/1.0/"

"RQOO1",

""nc:ItemName": Wrench",

"nc:ItemQuantity": 10

}

|

|

|

|

|

|

| "'msg:RequestID" :
|

|

|

|
[
|

3

Example 3-2: Messages in XML and JSON syntax

Message data

<msg:Request> or
"msg:Request":{...}

Description

The initial property is msg:Request . The message
model defines the range of this property as the
msg:RequestType class.

Meaning

There is an object that is a request for a
specified quantity of a named item.

<msg:RequestID> *or
"msg:RequestID": ...

The next property is msg:RequestID . The message
model defines the range of this data property as the
xs:token datatype.

There is a RequestID relationship between
the object of msg:RequestType and the
literal value RQOO1 .

<msg:RequestedItem> or
"msg:RequestedItem":{...}

The next property is msg:RequestedItem . The
message model defines the range of this object
property as the nc:ItemType class.

There is a Requestedltem relationship
between the object of msg:RequestType
and the object of nc:ItemType .

<nc:ItemName> or
"nc:ItemName": ...

The next property is nc:ItemName . The message
model defines the range of this data property as the
nc:TextType datatype.

There is an ItemName relationship between
the object of nc:ItemType and the literal
value Wrench .

<nc:ItemQuantity> or
nc:ItemQuantity":...

The next property is nc:ItemQuantity . The message
model defines the range of this data property as the
nc:QuantityType datatype.

There is an ltemQuantity relationship between
the object of nc:ItemType and the literal
value 10.

Table 14-2: Meaning of NIEM data

NIEM also provides an interpretive framework for model and message semantics that is grounded in the Resource Description Framework
(RDF). Every component in a NIEM model and every object in a NIEM message corresponds to a set of RDF triples, using terms from RDFS
and OWL. The semantics of NIEM models and messages are defined by the meaning of those RDF triples, offering several benefits:

« Cross-format equivalence: NIEM RDF defines equivalence among messages of different message formats. An XML message and a
JSON message that correspond to the same RDF triples are semantically equivalent and can be translated between formats with no loss

of information.

« Open-world semantics and explicit assertions: RDF operates under the open-world assumption, meaning that the absence of information

fCopyright © OASIS Open 2025. All Rights Reserved.

f{fformatted_date} - Page 83 of 114

does not imply its negation. It avoids inferring implicit relationships unless explicitly stated. These principles also apply to NIEM data.

« Knowledge graph representation: The RDF entailed by a NIEM message and its model is a knowledge graph. This representation allows
NIEM data to be used in semantic web applications, linked data ecosystems, and Al-driven systems.

Message designers and developers are not required to understand or work directly with RDF. NIEM models, messages, and conformance
rules are explained without reference to RDF or RDF concepts. NIEM messages can always be processed as ordinary XML or JSON data.
However, with no additional effort, NIEM messages and models are also available as RDF as well, for the benefit of those who use semantic

technologies.

14.1 RDF interpretation of NIEM models

This subsection defines the RDF triples that are entailed by the components of a NIEM model. At present, these RDF triples express only
semantics; they do not express cardinality or datatype constraints. A later version of this document may add RDF entailments for those
constraints, at which point RDF may be said to be a third representation for NIEM models.

14.1.1 Model terminology in CMF, XSD, and RDF

CMF, XSD, and RDF use different terms for the same kind of model components. The correspondence among these terms is given in table 14-

3 below.
CMF XSD RDF
Type definition .
Class (with complex content and/or attributes) rdfs:Class
Type definition .
Datatype (with simple content and no attributes) rdfs:Datatype
Property Element or attribute declaration rdfs:Property
ObjectProperty Element declaration owl:ObjectProperty
DataProperty Element or attribute declaration owl:DataProperty (or DatatypeProperty)

Table 14-3: Correspondence of model terminology in CMF, XSD, and RDF

14.1.2 Identifiers for model components

Every component in a NIEM model has exactly one Uniform Resource Identifier (URI). It is formed from the component name and the URI for
the component's namespace, according to the following algorithm:

o If the namespace URI endsin / orin #,then the component URI is formed by concatenating the namespace URI and the component
name; for example:

o Namespace URI: https://docs.oasis-open.org/niemopen/ns/model/niem-core/6.0/
o Component name: PersonType
o Component URI: https://docs.oasis-open.org/niemopen/ns/model/niem-core/6.0/PersonType

« Otherwise, the component URI is formed by concatenating the namespace URI, the character / , and the component name; for example:

o Namespace URI: http://example.com/SomeNamespace
o Component name: FooType
o Component URI: http://example.com/SomeNamespace/FooType

« When the namespace URI is a URN, the component URI is formed by concatenating the namespace URI, the character : , and the
component name; for example:

o Namespace URI: urn:us:gov:some:thing
o Component name: BarType
o Component URI: urn:us:gov:some:thing:BarType

14.1.3 RDF interpretation of Class objects
A Class object

o with the URI $id entails the following RDF: $id rdf:type owl:Class .
« with a non-empty DocumentationText property $doc entails: $id skos:definition $doc .
o with a non-empty SubClassOf property $sub entails: $id owl:subClassOf $sub .

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 84 of 114

Example 14-4 below shows the CMF and XSD representation of a Class object, plus the RDF entailed by that object.

<Class structures:id="nc.weightMeasureType">
<Name>WeightMeasureType</Name>
<Namespace structures:ref="nc" xsi:nil="true"/>
<DocumentationText>A data type for a measure of a weight.</DocumentationText>
<SubClassOf structures:ref="nc.MeasureType" xsi:nil="true"/>
<ChildPropertyAssociation>
<ObjectProperty structures:ref="nc.WeightUnitAbstract" xsi:nil="true"/>
<MinOccursQuantity>0</MinOccursQuantity>
<MaxOccursQuantity>unbounded</MaxOccursQuantity>
</ChildPropertyAssociation>
</Class>
<xs:complexType name="WeightMeasureType">
<xs:annotation>
<xs:documentation>A data type for a measure of a weight.</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base='"nc:MeasureType">
<xXs:sequence>
<xs:element ref="nc:WeightUnitAbstract" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="nc:wWeightMeasureAugmentationPoint" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
nc:WeightMeasureType
rdf:type owl:Class ;
skos:definition "A data type for a measure of a weight." ;
owl:subClassOf nc:MeasureType .

Example 14-4: RDF entailed by a Class object

14.1.4 RDF interpretation of DataProperty objects
A DataProperty object

o with the URI $id entails the following RDF: $id rdf:type owl:DataProperty

« with a non-empty DocumentationText property $doc entails: $id skos:definition $doc
« with a non-empty Datatype property $type entails: $id rdfs:range $type

o with a non-empty SubPropertyOf property $sub entails: $id rdfs:subPropertyof $sub

Example 14-5 below shows the CMF and XSD representation of an DataProperty object, plus the RDF entailed by that object.

<DataProperty structures:id="unece.MassUnitCode">
<Name>MassUnitCode</Name>
<Namespace structures:ref="unece" xsi:nil="true"/>
<DocumentationText>A unit of measure of the weight value.</DocumentationText>
<SubPropertyOf structures:ref="nc.WeightUnitAbstract" xsi:nil="true"/>
<Datatype structures:ref="unece.MassCodeType" xsi:nil="true"/>
</DataProperty>

<xs:element name="MassUnitCode" type="unece:MassCodeType" substitutionGroup="nc:WeightUnitAbstract" nillable="true">
<xs:annotation>
<xs:documentation>A unit of measure of the weight value.</xs:documentation>
</xs:annotation>
</xs:element>

unece:MassUnitCode
rdf:type owl:DatatypeProperty ;
skos:definition "A unit of measure of the weight value." ;
rdfs:range unece:MassCodeType ;
rdfs:subProperty0f nc:WeightUnitAbstract .

Example 14-5: RDF entailed by a DataProperty object

14.1.5 RDF interpretation of ObjectProperty objects
An ObjectProperty object

« with the URI $id entails the following RDF: $id rdf:type owl:ObjectProperty
« with a non-empty DocumentationText property $doc entails: $id skos:definition $doc
« with a non-empty Class property $class entails: $id rdfs:range $class

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 85 of 114

« with a non-empty SubClassOf property $sub entails: $id rdfs:subClassof $sub .

Example 14-6 below shows the CMF and XSD representation of an ObjectProperty object, plus the RDF entailed by that object.

<ObjectProperty structures:id="nc.Location2DGeospatialCoordinate">
<Name>Location2DGeospatialCoordinate</Name>
<Namespace structures:ref="nc" xsi:nil="true"/>
<DocumentationText>A location identified by a latitude and longitude.</DocumentationText>
<SubPropertyOf structures:ref='"nc.LocationGeospatialCoordinateAbstract" xsi:nil="true"/>
<Class structures:ref="nc.Location2DGeospatialCoordinateType" xsi:nil="true"/>
</0ObjectProperty>

<xs:element name="Location2DGeospatialCoordinate" type="nc:Location2DGeospatialCoordinateType"
substitutionGroup="nc:LocationGeospatialCoordinateAbstract" nillable="true">
<xs:annotation>
<xs:documentation>A location identified by a latitude and longitude.</xs:documentation>
</xs:annotation>
</xs:element>

nc:lLocation2DGeospatialCoordinate
rdf:type owl:0ObjectProperty ;
skos:definition "A location identified by a latitude and longitude." ;
rdfs:range nc:Location2DGeospatialCoordinateType ;
rdfs:subProperty0f nc:LocationGeospatialCoordinateAbstract .

Example 14-6: RDF entailed by an ObjectProperty object

14.2 RDF interpretation of NIEM messages

This subsection defines the RDF triples that are entailed by the constructs in a NIEM message. The examples show portions of equivalent XML
and JSON messages, and of the RDF those portions entail.

14.2.1 Objects, properties, and values
The information in a NIEM message is expressed as values of properties of objects.

« An object in NIEM XML is an element that has attributes, or complex content, or both. An object in NIEM JSON is a JSON object that is
the value of a key/value pair.

o A property in NIEM XML is an attribute name or an element tag. The QName of the attribute or the element tag identifies a Property
object in the -message model-; section 14.1.2 specifies how to convert that QName to the property's URI. A property in NIEM JSON is the
key in a key/value pair. The key is a compact IRl that expands to the property's URI.

o Avalue in NIEM XML can be a literal, the value of an attribute or the simple content of an element. A value in NIEM XML can also be an
object, a child element with attributes and/or complex content. A value in NIEM JSON can be an object, or a literal; that is, a string,
number, or boolean. (A value in NIEM JSON can also be an array of values for a repeatable property; see section 14.2.7.)

In the XML shown inexample 14-7 below, the nc:PersonName elementis an object; nc:PersonGivenName is a property of that object;
Tom is a literal value of that property. In the JSON, the value of the nc:PersonName key is an object; nc:PersonGivenName is a property
of that object; Tom is a literal value of that property.

<nc:PersonName> | "nc:PersonName": {
<nc:PersonGivenName>Tom</nc:PersonGivenName> | "'nc:PersonGivenName": "Tom"
</nc:PersonName> | 3}

Example 14-7: NIEM objects, properties, and values

14.2.2 Messages and message objects

A -message type- declares the message property for the messages of that type (see §3.1.3). The value of the message property is known as
the message object. The data structure of a NIEM message is a directed graph in which all nodes are reachable from the message object.

A NIEM XML message is an XML document. The message object is the element with the message property tag; this is usually the document
object.

A NIEM JSON message is a JSON object with at least one @context key, plus one key that is the message property. The message object is
the value of that key.

For example, the message object in the XML message below is the element with the msg:Request tag. The message object in the JSON
message is the value of the msg:Request key.

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 86 of 114

<msg:Request
xmlns:nc="https://docs.oasis-open.org/niemopen/ns/model/niem
xmlns:msg="http://example.com/ReqRes/1.0/">
<msg:RequestID>RQOO1</msg:RequestID>
<msg:RequestedItem> Do
<nc:ItemName>Wrench</nc:ItemName> "msg:Request": {

I {

|
|
|
|
|

<nc:ItemQuantity>10</nc:ItemQuantity> | "msg:RequestID" : "RQOO1"

|
|
|
|
|
|

"@context": {
"nc": "https://docs.oasis-open.org/niemopen/ns/model/niem-
"msg": "http://example.com/ReqRes/1.0/"

</msg:RequestedItem> "'msg:RequestedItem": {
</msg:Request> "nc:ItemName": "Wrench",
"nc:ItemQuantity": 10
}

}
}

Example 14-8: Message objects in NIEM XML and NIEM JSON

14.2.3 Objects and object identifiers

A hierarchy of nested objects (for example, those described intable 14-2 above) is sufficient to represent simple data that takes the form of a
tree. However, this simple representation has limitations, and is not capable of expressing all relationships among objects. Situations that
cause problems include:

« Cycles: some object has a relationship that, when followed, eventually circles back to itself. For example, suppose that Bob has a sister
relationship to Sue, who has a brother relationship back to Bob. These relationships do not form a tree; they require a data structure that
is a graph, rather than a simple hierarchy of objects.

« Reuse: multiple objects have a relationship to a common object. For example, suppose Bob and Sue both have a mother relationship to
Sally. Expressed as a tree of nested objects, this would result in a duplicate representation of Sally.

NIEM solves these problems through message object identifiers. The data that represents an object may include an object identifier. Data with
the same identifier represents the same object, and is interpreted as if the the object in its entirety appeared at that point in the message. The
resulting data structure is a graph, not a tree.

This subsection describes how those identifiers become the subject IRIs or blank node identifiers in the RDF triples entailed by a message
object.

Most objects in a NIEM message have no identifier. These objects entail RDF triples with a subject that is a blank node. Example 14-9 shows
XML and JSON objects with no identifier, and the triples these objects entail.

<nc:PersonName> | "nc:PersonName": { | _:b® rdf:type nc:PersonNameType
<nc:PersonGivenName>Tom</nc:PersonGivenName> | ""nc:PersonGivenName": "Tom" | _:b® nc:PersonName _:bl
</nc:PersonName> | 3}

Example 14-9: NIEM objects without identifiers

Some objects are identified by a fragment identifier. In the common case, where the message does not have a base URI, these objects also
entail RDF triples with a blank node subject. In an XML message, structures:id always supplies a fragment identifier, as does
structures:uri when the leading characteris # . In a JSON message, a value of the @id key beginning with # also supplies a fragment
identifier. By convention, the fragment identifier is used as the blank node identifier. Example 14-10 shows XML and JSON objects with
fragment identifiers, and the blank node RDF triples these objects entail.

<nc:PersonName structures:id="N01">

<nc:PersonGivenName>Tom</nc:PersonGivenName>
</nc:PersonName> "nc:PersonGivenName": "Tom"
<nc:PersonName structures:uri="#N02"> Ty

| "nc:PersonName": [

|

|

|
<nc:PersonGivenName>Dick</nc:PersonGivenName> | { "@id": "#NO2",

|

|

|

{ "@id": "#No1"

_:NO@1 rdf:type nc:PersonNameType .
_:N@1 nc:PersonName _:b1l .

_:N@2 rdf:type nc:PersonNameType .
_:N®2 nc:PersonName _:b2 .

</nc:PersonName> "nc:PersonGivenName": "Dick"

}

]

Example 14-10: NIEM objects with fragment identifiers

Some objects are identified by an -absolute URI-. These entail RDF triples with a resource subject. In XML, these identifiers are supplied by
structures:uri ;in JSON, by @id . Example 14-11 shows XML and JSON objects identified by -absolute URI-, and the RDF triples these
objects entail.

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 87 of 114

<nc:PersonName structures:uri="http://example.com/Name7">
<nc:PersonGivenName>Harry</nc:PersonGivenName>

</nc:PersonName>

"nc:PersonName": {
"@id": "http://example.com/Name7",
""nc:PersonGivenName": "Harry"

<http://example.com/Name7> rdf:type nc:PersonNameType .
<http://example.com/Name7> nc:PersonName _:bl .

Example 14-11: NIEM objects identified by absolute URI

NIEM messages are often without expectation of permanence, existing only to exchange data from producer to consumers. There is typically
no identifier for such a message as a whole. However, some messages do have identifiers; these are encoded in an XML message by

xml:base , and in JSON by a @base key in the message context.

When a NIEM message has an identifier, objects with a fragment identifier entail RDF triples with a resource subject instead of a blank node
identifier. The URI for the resource is then formed from the fragment identifier and the message URI according to the process in section 5 of
[RFC 3986], treating the message URI as the base URI. Example 14-12 shows an XML and JSON message with an identifer, and the RDF

triples entailed by the objects therein.

<my:Message
xmlns:my="http://example.com/My/Namespace/"

xmlns:nc="https://docs.oasis-open.org/niemopen/ns/model/niem-core/6.0/"

xml:base="http://example.com/MSG/22">

<nc:PersonName structures:id="N01">
<nc:PersonGivenName>Tom</nc:PersonGivenName>

</nc:PersonName>

<nc:PersonName structures:uri="#N@2">
<nc:PersonGivenName>Dick</nc:PersonGivenName>

</nc:PersonName>

</my:Message>

{
"@context": {
"my": "http://example.com/My/Namespace/",
"nc": "https://docs.oasis-open.org/niemopen/ns/model/niem-core/6.0/",
"@base": "http://example.com/MSG/22"
}
"nc:PersonName": [
{ "@id": "#NO1"
"nc:PersonGivenName": "Tom"
+
{ "@id": "#NO2",
"nc:PersonGivenName": "Dick"
}
]
}

<http://example.com/MSG/22#N01> nc:PersonGivenName "Tom" .
<http://example.com/MSG/22#N02> nc:PersonGivenName "Dick" .

Example 14-12: Objects with fragment identifiers and message base URI

14.2.4 Object properties and object class

Every object in a NIEM message is an instance of a Class in the message model; specifically, the class of the object property (see §4.8). Every
object entails a RDF triple specifying its class via rdf:type . For example, the objects below are values of the nc:PersonName object
property, and are instances of the nc:PersonNameType class, and entail the RDF triple shown.

<nc:PersonName> | "nc:PersonName":
<nc:PersonGivenName>Tom</nc:PersonGivenName>

</nc:PersonName> | 3

<nc:PersonName structures:id="N01"> | "nc:PersonName": {

<nc:PersonGivenName>Dick</nc:PersonGivenName>
</nc:PersonName>

<nc:PersonName
structures:uri="http://example.com/Name7">
<nc:PersonGivenName>Harry</nc:PersonGivenName>
</nc:PersonName>

}

Example 14-13: Object property and class

"nc:PersonGivenName":

"nc:PersonGivenName":

"nc:PersonName" :
: "http://example.com/Name7",
nc:PersonGivenName": "Harry"

_:b0® rdf:type nc:PersonNameType .

_:N01 rdf:type nc:PersonNameType

<http://example.com/Name7>
rdf:type nc:PersonNameType .

fCopyright © OASIS Open 2025. All Rights Reserved.

f{fformatted_date} - Page 88 of 114

14.2.5 Data properties and literal values

When the Property in the model is a DataProperty, the property value in the message is a literal. In example 14-13 above,
nc:PersonGivenName is a data property; it has the Datatype nc:PersonNameType ; its values are the literal strings "Tom", "Dick", and
"Harry".

Literal values have a type definition that is a Datatype object in the -message model-; specifically, the datatype of thedata property (see §4.9). If
the datatype is not derived from xs:string , then the value in the RDF triple includes a specification of the XSD base type, in the form

"$value"ArrgbaseType , where value *istheliteraland*baseType is the QName of the XSD type. For example, in example 14-14 below, the
datatype of nc:ItemQuantity is derived from xsd:decimal ;the RDF triple entailed by that property is as shown.

<msg:RequestedItem> | { | _:b® rdf:type msg:RequestedItemType
<nc:ItemName>Wrench</nc:ItemName> | "msg:RequestedItem": { | _:b® nc:ItemName "Wrench"
<nc:ItemQuantity>10</nc:ItemQuantity> | "nc:ItemName": "Wrench", | _:b® nc:ItemQuantity "10"AAxsd:decimal
</msg:RequestedItem> | "nc:ItemQuantity": 10
| } |
|} |

Example 14-14: Data property and datatype in RDF

Language-tagged strings are represented in NIEM as anobject property with a-literal class-, and not as a data property, as shown in the next
section.

14.2.6 Literal class and language tags

A literal that has a language specification is represented as an instance of a -literal class- in NIEM XML and NIEM JSON. The language tag is
specified by xml:lang in an XML message, and is specified by @language in a JSON message, and entails a language-tagged string in
RDF. For example, the class of the object property nc:CommentText is nc:TextType , which is defined as follows in CMF and XSD:

<Class structures:id="nc.TextType">
<Name>TextType</Name>
<Namespace structures:ref="nc" xsi:nil="true"/>
<DocumentationText>A data type for a character string.</DocumentationText>
<ChildPropertyAssociation>
<DataProperty structures:ref="nc.TextLiteral" xsi:nil="true"/>
<MinOccursQuantity>1</MinOccursQuantity>
<MaxOccursQuantity>1</MaxOccursQuantity>
</ChildPropertyAssociation>
<ChildPropertyAssociation>
<DataProperty structures:ref="xml.lang" xsi:nil="true"/>
<MinOccursQuantity>0</MinOccursQuantity>
<MaxOccursQuantity>1</MaxOccursQuantity>
</ChildPropertyAssociation>
</Class>
<xs:complexType name="TextType">
<xs:annotation>
<xs:documentation>A data type for a character string.</xs:documentation>
</xs:annotation>
<xs:simpleContent>
<xs:extension base="niem-xs:string">
<xs:attribute ref="xml:lang" use="optional"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>

Example 14-15: Literal class definition of a language-tagged string

Example 14-16 shows a language-tagged instance of nc:CommentText in XML and JSON, and shows the RDF triples entailed by this object.

_:b0® rdf:type nc:TextType .
_:bO® nc:CommentText "Trés bien!"@fr .

<nc:CommentText xml:lang="fr">
Tres bien!
</nc:CommentText>

"nc:CommentText": {
"@value": "Tres bien!",

|
|
"@language": "fr"
|

}

Example 14-16: Language-tagged string in XML, JSON, and RDF

Section 5.1, Datatypes and literal classes contains more examples of literal class values in XML and JSON.

14.2.7 Repeatable properties

Class objects in the model specify the allowable cardinalities of their properties via a ChildPropertyAssociation object.

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 89 of 114

A ChildPropertyAssociation object in the message model represents an association between a class and a child property of that class (see
§4.5). When that model object has a MaxOccursQuantity greater than one, the property is repeatable. The values of a repeatable property are
represented as an array in JSON (even if the property occurs only once). Each value entails a separate RDF triple. Example 14-17 shows the
values of the repeatable property foo in XML and JSON, and the RDF triples entailed by those values.

{ :bO rdf:type msg:InventoryType .
:b® nc:Item :_bl .

:b® nc:Item :_b2 .

<msg:Inventory>
<nc:Item>
<nc:ItemName>Wrench</nc:ItemName>

"msg:Inventory": {
"nc:Item": [

<nc:ItemQuantity>10</nc:ItemQuantity> { _:bl rdf:type nc:ItemType
</nc:Item> "nc:ItemName": "Wrench", _:b1 nc:ItemName "Wrench"
<nc:Item> "nc:ItemQuantity": 10 _:bl nc:ItemQuantity "10"AAxsd:decimal
:b2 rdf:type nc:ItemType .
<nc:ItemQuantity>2</nc:ItemQuantity> { _:b2 nc:ItemName "Hammer"
</nc:Item> "nc:ItemName": "Hammer", _:b2 nc:ItemQuantity "2"AAxsd:decimal

</msg:Inventory> "nc:ItemQuantity": 2
}
]

}

|
|
|
|
|
|
<nc:ItemName>Hammer</nc:ItemName> | }
|
|
|
|
|
|
|

}

Example 14-17: Repeatable object property

Data properties that have a List datatype are also repeatable properties. For example, nc:MeasureTextList is a data property with a
datatype that is a list of xs:string values. Example 14-18 shows an instance of that property in XML and JSON, and shows the RDF ftriples
entailed by that property.

<cbrn:TotalEfficiencyCalculation>
<cbrn:EnergyValuelList>15.0 32.2</cbrn:EnergyvaluelList>
</cbrn:TotalEfficiencyCalculation>

"cbrn:TotalEfficiencyCalculation": {
"cbrn:EnergyVvalueList": [15.0, 32.2]

_:b0 rdf:type cbrn:EfficiencyCalibrationType .
_:bo cbrn:EnergyvalueList 15.07Axsd:double .
_:b0 cbrn:EnergyvalueList 32.2AAxsd:double .

Example 14-18: Repeatable data property with a List datatype

14.2.8 Ordered properties

By default, the order of a repeated property in an object is not significant. For example, there is no meaning to the fact that "Wrench" appears
before "Hammer" in example 14-17, or that "15.0" comes before "32.2" inexample 14-18.

An ordered property is a repeatable property in which order is signficant. For example, the order of a repeated nc:PersonMiddleName
property is usually significant; "Peter Death Bredon Wimsey" is not the same name as "Peter Bredon Death Wimsey". An ordered property is
indicated in the model by a Property object in which OrderedPropertylndicator is true. For example, example 4-23 shows the CMF and XSD
definition of a ChildPropertyAssociation object belonging to nc:PersonNameType , in which nc:PersonMiddleName is an ordered property.

An ordered property is represented in JSON as a JSON object with the @1ist key and an array of the ordered values. In RDF, it is a list.
Example 14-19 below shows the values of an ordered property in XML and JSON, and the RDF triples entailed by those values.

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 90 of 114

<nc:PersonName>

<nc:PersonGivenName>Peter</nc:PersonGivenName>
<nc:PersonMiddleName>Death</nc:PersonMiddleName>
<nc:PersonMiddleName>Bredon</nc:PersonMiddleName>
<nc:PersonSurName>Wimsey</nc:PersonSurName>

</nc:PersonName>

"nc:PersonName": {
"nc:PersonGivenName": "Peter",
"nc:PersonMiddleName": {

"@list": ["Death", "Bredon"]
}
"nc:PersonSurName": "Wimsey"
}

_:b0® rdf:type nc:PersonNameType .
_:b0® nc:PersonGivenName "Peter" .
_:b0® nc:PersonMiddleName ("Death", "Bredon")

:b® nc:PersonSurName "Wimsey" .

Example 14-19: Ordered property values

14.2.9 Relationship properties

NIEM uses embedded triples from [RDF 1.2] to represent relationship properties. Example 14-20 shows the RDF entailed by the XML and
JSON message from example 5-11, which records the secret relationship between a person object and the name "Superman". Figure 14-21
depicts that RDF graph.

<nc:Person>

</nc:Person>

"nc:Pe

{

<nc:PersonName my:isSecret="true">
<nc:PersonFullName>
Superman
</nc:PersonFullName>

</nc:PersonName> "my:isSecret": "true"
<nc:PersonFullName> 3,
Clark Kent {
</nc:PersonFullName> "nc:PersonFullName": "Clark Kent"

</nc:PersonName>

}
]

|
|
|
|
|
|
<nc:PersonName> | 3
|
|
|
|
|
|

}

"nc:Person": {

"'nc:PersonFullName":
"@annotation": {

rsonName": [

"Superman",

:b1l nc:PersonName
:b1l nc:PersonName
{| "my:isSecret":
_:b2 nc:PersonFullName "Superman" .
_:b3 nc:PersonFullName "Clark Kent" .

Example 14-20: RDF 1.2 equivalent for a relationship property

myisSecret

ne: Personi ame

true

nc: PersonFullName

e -
)

ne: Persanil ame
_n3

Superman

nc: PersonfullName

Clark Kent

Figure 14-21: RDF graph for a relationship property

14.2.10 Reference attributes

_:b2 .
_:b2

"true" |} .

Reference attributes are a means for of augmentation in XML messages, used to augment a datatype or -literal class- with an object property.
(See §4.16.2.4) A reference attribute contains a list of object references. Each referenced object is a value of the -augmentation property-.
Example 14-22 shows an XML message with a reference attribute, plus the corresponding RDF.

fCopyright © OASIS Open 2025. All Rights Reserved.

f{fformatted_date} - Page 91 of 114

<nc:Person>
<nc:PersonName>
<nc:PersonFullName>John Doe</nc:PersonFullName>
</nc:PersonName>

<j:PersonSexualOrientationCode my:privacyAssertionRef="PRIVO1">UNKNOWN</j

</nc:Person>

<my:PrivacyAssertion structures:id="PRIV0O1">
<nc:Date>2023-08-05</nc:Date>
<my:PrivacyText>RESTRICTED</my:PrivacyText>

</my:PrivacyAssertion>

:bO rdf:type nc:PersonType .

:b® nc:PersonName _:bl .

:bO j:PersonSexualOrientationCode _:b2 .

:bl rdf:type nc:PersonNameType .

:bl nc:PersonFullName "John Doe"

:b2 rdf:type j:PersonSexualOrientationCodeType .

:b2 ndex:PersonSexualOrientationCodeLiteral "UNKNOWN"

:b2 my:PrivacyAssertion _:PRIVO1 .

:PRIVO1 rdf:type my:PrivacyAssertionType .

:PRIVO1 nc:Date "2023-08-05"

:PRIVO1 my:PrivacyText "RESTRICTED"

:PersonSexualOrientationCode>

Example 14-22: Reference attribute and RDF

14.2.11 Augmentation elements

Augmentation elements are a means for augmentation in XML messages, used to augment an ordinary class with an object property. (See
§4.16.2.2) An -augmentation element-: is a container for property values belonging to its parent. For example, the -augmentation element-
j:PersonAugmentation inexample 14-23 below contains two values belonging to the nc:Person element. Augmentation elements have
no meaning of their own, and do not appear in JSON or RDF messages. Example 14-23 shows an XML message with an-augmentation

element:, plus the corresponding JSON message and the RDF entailed.

<nc:Person>
<nc:PersonBirthDate>
<nc:Date>2021-09-11</nc:Date>
</nc:PersonBirthDate>
<nc:PersonName>
<nc:PersonFullName>John Doe</nc:PersonFullName>
</nc:PersonName>
<j:PersonAugmentation>

<j:PersonAdultIndicator>true</j:PersonAdultIndicator>
<j:PersonSightedIndicator>true</j:PersonSightedIndicator>

</j:PersonAugmentation>
</nc:Person>
"nc:Person": {
"nc:PersonBirthDate": {
"nc:Date": "2021-09-11"
i
"nc:PersonName": {
"nc:PersonFullName": "John Doe"

’
"j:PersonAdultIndicator": true,
"j:PersonSightedIndicator": true

:bO rdf:type nc:PersonType .

:b0® nc:PersonBirthDate _:b1 .

:b® nc:PersonName _:b2 .

:bO j:PersonAdultIndicator "true"AAxsd:boolean .
:b0® j:PersonSightedIndicator "true'"AAxsd:boolean .
:b1l rdf:type nc:DateType .

:bl nc:Date "2021-09-11"

:b2 rdf:type nc:PersonNameType .

:b2 nc:PersonFullName "John Doe"

Example 14-23: Augmentation element and RDF

fCopyright © OASIS Open 2025. All Rights Reserved.

f{fformatted_date} - Page 92 of 114

Appendix A. References

This appendix contains the normative and informative references that are used in this document. Any normative work cited in the body of the
text as needed to implement the work product must be listed in the Normative References section below. Each reference to a separate
document or artifact in this work must be listed here and must be identified as either a Normative or an Informative Reference. Normative
references are specific (identified by date of publication and/or edition number or version number) and Informative references are either
specific or non-specific.

While any hyperlinks included in this appendix were valid at the time of publication, OASIS cannot guarantee their long-term validity.

A.1 Normative References

The following documents are referenced in such a way that some or all of their content constitutes requirements of this document.

[BCP14]

Best Current Practice 14. https://www.rfc-editor.org/refs/ref-bcpl4d.txt

[ClarkNS]

Clark, J. "XML Namespaces", 4 February 1999. http://www.jclark.com/xml/xmlns.htm.

[CMF]

Common Model Format Specification, NIEM Technical Architecture Committee. https://github.com/niemopen/common-model-format.
[Code Lists]

Roberts, W. "NIEM Code Lists Specification”. NIEM Technical Architecture Committee (NTAC), November 7, 2017.
https://reference.niem.gov/niem/specification/code-1lists/4.0/niem-code-1lists-4.0.html.

[CTAS]

Conformance Targets Attribute Specification (CTAS) Version 3.0. Edited by Tom Carlson. 22 February 2023. OASIS Project Specification 01.
https://docs.oasis-open.org/niemopen/ctas/v3.0/ctas-v3.0.html.

[1SO 11179-4]

"ISO/IEC 11179-4 Information Technology — Metadata Registries (MDR) — Part 4: Formulation of Data Definitions Second Edition", 15 July
2004.

[ISO 11179-5]
"ISO/IEC 11179-5:2005, Information technology — Metadata registries (MDR) — Part 5: Naming and identification principles".
[JSON-LD]

Sporny, M., et al. "JSON-LD 1.1: A JSON-based Serialization for Linked Data". W3C Recommendation, 16 July 2020.
https://www.w3.0rg/TR/json-1d11/.

[OED]
Oxford English Dictionary, Third Edition, Oxford University Press, November 2010. http://www.oed.com/.
[RDF 1.2]

RDF 1.2 Concepts and Abstract Syntax, W3C Working Draft, 04 July 2025.
https://www.w3.0rg/TR/rdf12-concepts/.

[RFC 2119]

Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997.
http://tools.ietf.org/html/rfc21109.

[RFC 3986]

Berners-Lee, T., et al., "Uniform Resource Identifier (URI): Generic Syntax", Request for Comments 3986, January 2005.
http://tools.ietf.org/html/rfc3986.

[RFC 8174]

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017,
http://tools.ietf.org/html/rfc8174.

[RFC 8259]

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 93 of 114

https://www.rfc-editor.org/refs/ref-bcp14.txt
http://www.jclark.com/xml/xmlns.htm
https://github.com/niemopen/common-model-format
https://reference.niem.gov/niem/specification/code-lists/4.0/niem-code-lists-4.0.html
https://docs.oasis-open.org/niemopen/ctas/v3.0/ctas-v3.0.html
https://www.w3.org/TR/json-ld11/
http://www.oed.com/
https://www.w3.org/TR/rdf12-concepts/
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc8174

Bray, T. "The JavaScript Object Notation (JSON) Data Interchange Format", Request for Comments 8259, December 2017.

https://tools.ietf.org/html/rfc8259.
[SemVer]

"Semantic Versioning 2.0.0". https://semver.org/.
[XML]

"Extensible Markup Language (XML) 1.0 (Fifth Edition)", W3C Recommendation, 26 November 2008.
http://www.w3.0rg/TR/2008/REC-xml-20081126/.

[XML Infoset]

Cowan, John, and Richard Tobin. "XML Information Set (Second Edition)", 4 February 2004.
http://www.w3.0rg/TR/2004/REC-xml-infoset-20040204/.

[XML Namespaces]

"Namespaces in XML 1.0 (Third Edition)", W3C Recommendation, 8 December 2009.
http://www.w3.0rg/TR/2009/REC-xml-names-20091208/

[XML Schema Structures]
"XML Schema Part 1: Structures Second Edition", W3C Recommendation, 28 October 2004.
http://www.w3.0rg/TR/2004/REC-xmlschema-1-20041028/.

A.2 Informative References
[NIEM-Tools]

https://github.com/niemopen/ntac-admin/tree/main/tools

[webarch]

Jacobs, |. "Architecture of the World Wide Web, Volume One". W3C Recommendation 15 December 2004.

https://www.w3.0rg/TR/webarch/.

fCopyright © OASIS Open 2025. All Rights Reserved.

f{fformatted_date} - Page 94 of 114

https://tools.ietf.org/html/rfc8259
https://semver.org/
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2004/REC-xml-infoset-20040204/
http://www.w3.org/TR/2009/REC-xml-names-20091208/
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
https://github.com/niemopen/ntac-admin/tree/main/tools
https://www.w3.org/TR/webarch/

Appendix B. Structures namespace

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
targetNamespace="https://docs.oasis-open.org/niemopen/ns/model/structures/6.0/"
xmlns:structures="https://docs.oasis-open.org/niemopen/ns/model/structures/6.0/"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
version="ps02"
xml:lang="en-USs">
<xs:annotation>
<xs:documentation>The structures namespace provides base types and other components for definition of NIEM-conformant XML schemas.</xs
</xs:annotation>
<xs:attributeGroup name="SimpleObjectAttributeGroup">
<xs:attribute ref="structures:id"/>
<xs:attribute ref="structures:ref"/>
<xs:attribute ref="structures:uri"/>
<xs:anyAttribute processContents="strict" namespace="##other"/>
</xs:attributeGroup>
<xs:complexType name="AdapterType" abstract="true">
<xs:annotation>
<xs:documentation>A data type for a type that contains a single non-conformant property from an external standard for use in NIEM.</
</xs:annotation>
<xs:sequence>
<xs:element ref="structures:0ObjectAugmentationPoint" minOccurs="0" maxOccurs="unbounded"/>
</Xs:sequence>
<xs:attribute ref="structures:appliesToParent"/>
<xs:attribute ref="structures:id"/>
<xs:attribute ref="structures:ref"/>
<xs:attribute ref="structures:uri"/>
<xs:anyAttribute processContents="strict" namespace="##other"/>
</xs:complexType>
<xs:complexType name="AssociationType" abstract="true">
<xs:annotation>
<xs:documentation>A data type for a relationship between two or more objects, including any properties of that relationship.</xs:doc
</xs:annotation>
<xXs:sequence>
<xs:element ref="structures:AssociationAugmentationPoint" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute ref="structures:appliesToParent"/>
<xs:attribute ref="structures:id"/>
<xs:attribute ref="structures:ref"/>
<xs:attribute ref="structures:uri"/>
<xs:anyAttribute processContents="strict" namespace="##other"/>
</xs:complexType>
<xs:complexType name="AugmentationType" abstract="true">
<xs:annotation>
<xs:documentation>A data type for a set of properties to be applied to a base type.</xs:documentation>
</xs:annotation>
</xs:complexType>
<xs:complexType name="ObjectType" abstract="true">
<xs:annotation>
<xs:documentation>A data type for a thing with its own lifespan that has some existence.</xs:documentation>
</xs:annotation>
<Xs:sequence>
<xs:element ref="structures:0ObjectAugmentationPoint" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute ref="structures:appliesToParent"/>
<xs:attribute ref="structures:id"/>
<xs:attribute ref="structures:ref"/>
<xs:attribute ref="structures:uri"/>
<xs:anyAttribute processContents="strict" namespace="##other"/>
</xs:complexType>
<xs:element name="AssociationAugmentationPoint" abstract="true">
<xs:annotation>
<xs:documentation>An augmentation point for type structures:AssociationType.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="ObjectAugmentationPoint" abstract="true">
<xs:annotation>
<xs:documentation>An augmentation point for type structures:ObjectType.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:attribute name="appliesToParent" type="xs:boolean" default="true">
<xs:annotation>
<xs:documentation>True if this element is a property of its parent; false if it appears only to support referencing.</xs:documentati
</xs:annotation>
</xs:attribute>
<xs:attribute name="id" type="xs:ID">
<xs:annotation>
<xs:documentation>A document-relative identifier for an XML element.</xs:documentation>
</xs:annotation>

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 95 of 114

</xs:attribute>
<xs:attribute name="ref" type="xs:IDREF">
<xs:annotation>
<xs:documentation>A document-relative reference to an XML element.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="uri" type="xs:anyURI">
<xs:annotation>
<xs:documentation>An internationalized resource identifier or uniform resource identifier for a node or object.</xs:documentation>
</xs:annotation>
</xs:attribute>
</xs:schema>

4 H [17]

fCopyright © OASIS Open 2025. All Rights Reserved. f{fformatted_date} - Page 96 of 114

Appendix C. Index of rules

o Rule 7-1:
o Rule 7-2:
« Rule 7-3:
o Rule 7-4:
« Rule 7-5:
o Rule 7-6:
o Rule 7-7:
« Rule 7-8:
o Rule 7-9:

Attribute and element do not have same uncased name.
Name of Class, Datatype, and Property components.
Augmentation names are reserved.

Name of adapter classes

Name of association classes

Name of code list literal classes.

Names ending in "SimpleType".

Names ending in "CodeSimpleType".

Name of code list datatypes.

« Rule 7-10: Name of abstract properties.

¢ Rule 7-11: Name of association properties.

o Rule 7-12: Name of code properties.

« Rule 7-13: Name of literal properties in CMF.

o Rule 7-14: Name of representation attributes.

« Rule 7-15: Component name composed of English words. [Manual]

« Rule 7-16: Component names have only specific characters.

o Rule 7-17: Component names use camel case.

« Rule 7-18: Name of attribute properties begin with lower case letter.

« Rule 7-19: Name of components other than attribute properties begin with upper case letter.
¢ Rule 7-20: Punctuation in component name is a separator. [Manual]

o Rule 7-21: Singular form is preferred in name. [Manual]

« Rule 7-22: Present tense is preferred in name. [Manual]

o Rule 7-23: Name does not have nonessential words. [Manual]

o Rule 7-24: Property name follows ISO 11179-5 pattern. [Manual]

« Rule 7-25: Object-class term identifies concrete category. [Manual]

« Rule 7-26: Property term describes characteristic or subpart. [Manual]

« Rule 7-27: Name may have multiple qualifier terms. [Manual]

« Rule 7-28: Name avoids unnecessary qualifier terms. [Manual]

o Rule 7-29: Order of qualifiers is not significant. [Manual]

o Rule 7-30: Redundant term in name is omitted. [Manual]

o Rule 7-31: Data property uses representation term. [Manual]

« Rule 7-32: Object property uses representation term when appropriate. [Manual]
« Rule 7-33: Object property uses representation term only when appropriate. [Manual]
o Rule 7-34: Names use common abbreviations. [Manual]

« Rule 7-35: Local terms usable within their namespace. [Manual]

« Rule 7-36: Local term has literal or definition.

« Rule 7-37: Namespace has data definition.

« Rule 7-38: Model component has data definition.

« Rule 7-39: Enumeration facet has data definition.

o Rule 7-40: Pattern facet has data definition.

o Rule 7-41: Documentation is provided in US English.

o Rule 7-42: Data definition does not introduce ambiguity. [Manual]

« Rule 7-43: Object class has only one meaning. [Manual]

o Rule 7-44: Data definition of a part does not redefine the whole. [Manual]

« Rule 7-45: Do not leak representation into data definition. [Manual]

o Rule 7-46: Data definition follows 11179-4 requirements. [Manual]

o Rule 7-47: Data definition follows 11179-4 recommendations. [Manual]

« Rule 7-48: Standard opening phrase for abstract property data definition.

o Rule 7-49: Standard opening phrase for association property data definition.
« Rule 7-50: Standard opening phrase for date property data definition.

« Rule 7-51: Standard opening phrase for quantity property data definition.

¢ Rule 7-52: Standard opening phrase for picture property data definition.

« Rule 7-53: Standard opening phrase for indicator property data definition.

« Rule 7-54: Standard opening phrase for identification property data definition.
« Rule 7-55: Standard opening phrase for name property data definition.

fCopyright © OASIS Open 2025. All Rights Reserved.

f{fformatted_date} - Page 97 of 114

Rule 7-56
Rule 7-57
Rule 7-58
Rule 7-59
Rule 8-1:
Rule 8-2
Rule 8-3:
Rule 8-4:
Rule 8-5:
Rule 8-6:
Rule 8-7:
Rule 8-8:
Rule 8-9:
Rule 8-10
Rule 8-11
Rule 8-12
Rule 8-13
Rule 8-14
Rule 8-15
Rule 8-16
Rule 8-17
Rule 8-18
Rule 8-19
Rule 9-1:
Rule 9-2:
Rule 9-3:
Rule 9-4:
Rule 9-5:
Rule 9-6
Rule 9-7:
Rule 9-8:
Rule 9-9:
Rule 9-10
Rule 9-11
Rule 9-12
Rule 9-13
Rule 9-14
Rule 9-15
Rule 9-16
Rule 9-17
Rule 9-18
Rule 9-19

Rule 9-20:
Rule 9-21:
Rule 9-22:
Rule 9-23:
Rule 9-24:
Rule 9-25:
Rule 9-26:
Rule 9-27:
Rule 9-28:

Rule 9-29

Rule 9-30:
Rule 9-31:
Rule 9-32:
Rule 9-33:
Rule 9-34:
Rule 9-35:
Rule 9-36:

: Standard opening phrase for property data definition.

: Standard opening phrase for association class data definition.
: Standard opening phrase for class data definition.

: Enumerations are unique.

Namespace identifier is absolute URI.

: Namespace URI is owned by namespace authority. [Manual]

Namespaces use slash URIs.

Namespace URI includes version.

Namespace URI uses semantic versioning. [Manual]
Namespace has a prefix

Namespace has version.

Namespace has language.

Reference namespace asserts conformance.

: Reference namespace does not have wildcard.

: Object properties in reference namespace are referenceable.
: Reference namespace uses reference namespace components.
: Extension namespace asserts conformance.

: Object properties in extension namespace are referenceable.
: Subset namespace asserts conformance.

: Subset has corresponding reference or extension namespace. [Manual]
: Subset does not extend component range. [Manual]

: Subset does not add components. [Manual]

: Subset does not alter data definition. [Manual]

Schema is CTAS-conformant.

Document element has attribute ct:conformanceTargets .
Document is a valid schema document.

Document element is xs:schema .

Prohibited schema components.

: Prohibited base types.

Prohibited list item types.

Prohibited union item types

Prohibited attribute and element types.

: No mixed content on complex type or complex content.

: Complex type content is explicitly simple or complex.

: Base type of complex type with complex content must have complex content.
: Untyped element is abstract.

: Element type not in the XML or XML Schema namespace.

: Element type is not simple type.

: Attribute declaration has type.

: No default or fixed value

: Sequence has minimum and maximum cardinality 1.

: xs:choice must be child of xs:sequence .

Choice has minimum and maximum cardinality 1.

Comment is not recommended.

Documentation element has no element children.

Import has namespace.

Import specifies local resource.

Name of type definitions

Name of simple type definitions.

Name of complex type definition.

xs:sequence must be child of xs:extension .

: Type definition is top-level.

Complex type with complex content has a category.

Adapter type derived from structures:AdapterType .
Association type derived from structures:AssociationType .
Augmentation type derived from structures:AugmentationType .
Object type derived from structures:0ObjectType .

Base type definition defined by conformant schema.

Complex type with simple content has structures:SimpleObjectAttributeGroup .

fCopyright © OASIS Open 2025. All Rights Reserved.

f{fformatted_date} - Page 98 of 114

Rule 9-37:
Rule 9-38:
Rule 9-39:

Rule 9-40

Rule 9-66

Rule 9-76

Component reference defined by conformant schema.
Schema uses only known attribute groups.
List item type defined by conformant schemas.

: Union member types defined by conformant schemas.
Rule 9-41:
Rule 9-42:
Rule 9-43:
Rule 9-44:
Rule 9-45:
Rule 9-46:
Rule 9-47:
Rule 9-48:
Rule 9-49:
Rule 9-50:
Rule 9-51:
Rule 9-52:
Rule 9-53:
Rule 9-54:
Rule 9-55:
Rule 9-56:
Rule 9-57:
Rule 9-58:
Rule 9-59:
Rule 9-60:
Rule 9-61:
Rule 9-62:
Rule 9-63:
Rule 9-64:
Rule 9-65:

No literal properties in XSD.

Declarations are top-level.

Element type is not simple type.

Attribute and element type is from conformant namespace.
Element substitution group defined by conformant schema.
Attribute and element type not from structures namespace.

Only reference attributes have type xs:IDREFS .

Import of external schema document is labeled.

Import of external namespace has data definition.

Structure of adapter type definition follows pattern.

Element use from external adapter type defined by external schema documents.
External adapter type not a base type.

External attribute use has data definition.

External attribute use not an ID.

External element use has data definition.

Proxy types.

Proxy type has designated structure.

Name of augmentation types.

Name of augmentation elements.

Name of augmentation point elements.

Standard opening phrase for augmentation point element data definition.
Standard opening phrase for augmentation element data definition.
Standard opening phrase for augmentation type data definition.
Association type and object type are augmentable.

Augmentation point element named after augmented type.

: Augmentation point element corresponds to its base type.
Rule 9-67:
Rule 9-68:
Rule 9-69:
Rule 9-70:
Rule 9-71:
Rule 9-72:
Rule 9-73:
Rule 9-74:
Rule 9-75:

An augmentation point element has no type.

An augmentation point element has no substitution group.
Augmentation point element is only referenced by its base type.
Augmentation point element use is optional and unbounded.
Augmentation point element use must be last element in its base type.
Augmentation element named after augmented type.

Augmentation element type is an augmentation type.

Augmentation element is substitutable for augmentation point.
Augmentation element is unique.

: Augmentation elements are not used directly.
Rule 9-77:
Rule 9-78:
Rule 9-79:
Rule 9-80:
Rule 9-81:
Rule 9-82:
Rule 9-83:
Rule 9-84:
Rule 9-85:
Rule 9-86:
Rule 9-87:
Rule 9-88:
Rule 9-89:
Rule 9-90:
Rule 9-91:
Rule 9-92:
Rule 9-93:
Rule 9-94:
Rule 10-1:
Rule 10-2:

Augmentation type has one augmentation element.
Augmentation type named after augmented type.

No wildcard in augmentation type.

Appinfo attribute annotates schema component.

xs:appinfo children are comments, elements, or whitespace.
Appinfo child elements have namespaces.

Appinfo descendants are not XML Schema elements.
Component marked as deprecated is deprecated component.
LocalTerm appinfo applies to schema.

No simple type disallowed derivation.

No use of "fixed" on simple type facets.

No disallowed substitutions.

No disallowed derivation

Element declaration is nillable.

No xs:choice .

No wildcards.

External attribute use only in adapter type.

Element declaration is nillable.

Namespaces are conforming or external.

Unique namespace prefixes.

fCopyright © OASIS Open 2025. All Rights Reserved.

f{fformatted_date} - Page 99 of 114

Rule 10-3: Unique namespace identifiers.

Rule 10-4: Composition of schema document set.

Rule 10-5: Consistent import schema document.

Rule 10-6: Consistent import labels.

Rule 10-7: Namespace prefix is unique.

Rule 10-8: Schema document set must be complete.

Rule 10-9: Use structures namespace consistent with specification.
Rule 11-1: Message type declares initial property.

Rule 11-2: Message format schema matches message type. [Manual]
Rule 12-1: Message begins with initial property.

Rule 12-2: Message is schema-valid.

Rule 12-3: No attributes from wildcards in structures.

Rule 12-4: No forbidden references.

Rule 12-5: No forbidden references.

Rule 12-6: No forbidden references.

Rule 12-7: Element has only one resource identifying attribute.
Rule 12-8: Attribute structures:ref must reference structures:id .
Rule 12-9: Linked elements have same validation root.

Rule 12-10: Attribute structures:ref references element of correct type.
Rule 12-11: Reference attribute property refers to correct class.
Rule 12-12: xs:anyURI value must be valid URI.

Rule 12-13: No duplicate augmentation elements.

Rule 12-14: Nilled element must be an object reference.

Rule 13-1: Message is a JSON object.

Rule 13-2: Message is a JSON-LD document.

Rule 13-3: Message conforms to message format.

Rule 13-4: Message has context map for model namespaces.

Rule 13-5: Object keys are defined

Rule 13-6: @id keyword is object reference.

Rule 13-7: No forbidden references.

Rule 13-8: Linked objects have compatible class.

fCopyright © OASIS Open 2025. All Rights Reserved.

f{formatted_date} - Page 100 of 114

Appendix D. Mapping NIEM 5 rules to NIEM 6

NIEM 5 Rule NIEM 6 Rules

Rule 4-1, Schema marked as reference schema document must conform rule 8-9
Rule 4-2, Schema marked as extension schema document must conform rule 8-13
Rule 4-3, Schema is CTAS-conformant rule 9-1
Rule 4-4, Document element has attribute ct:conformanceTargets rule 9-2
Rule 4-5, Schema claims reference schema conformance target rule 8-9, rule 8-15
Rule 4-6, Schema claims extension conformance target rule 8-13
Rule 5-1, structures:uri denotes resource identifier no matching NIEME rule
Rule 7-1, Document is an XML document rule 9-3
Rule 7-2, Document uses XML namespaces properly rule 9-3
Rule 7-3, Document is a schema document rule 9-3
Rule 7-4, Document element is xs:schema rule 9-4
Rule 7-5, Component name follows ISO 11179 Part 5 Annex A rule 7-24
Rule 9-1, No base type in the XML namespace rule 9-6
Rule 9-2, No base type of xs:ID rule 9-6
Rule 9-3, No base type of xs:IDREF rule 9-6
Rule 9-4, No base type of xs:IDREFS rule 9-6
Rule 9-5, No base type of xs:anyType rule 9-6
Rule 9-6, No base type of xs:anySimpleType rule 9-6
Rule 9-7, No base type of xs:NOTATION rule 9-6
Rule 9-8, No base type of xs:ENTITY rule 9-6
Rule 9-9, No base type of xs:ENTITIES rule 9-6
Rule 9-10, Simple type definition is top-level rule 9-29
Rule 9-11, No simple type disallowed derivation rule 9-86
Rule 9-12, Simple type has data definition rule 7-38
Rule 9-13, No use of fixed on simple type facets rule 9-87
Rule 9-14, Enumeration has data definition rule 7-39
Rule 9-15, No list item type of xs:ID rule 9-7
Rule 9-16, No list item type of xs:IDREF rule 9-7
Rule 9-17, No list item type of xs:anySimpleType rule 9-7
Rule 9-18, No list item type of xs:ENTITY rule 9-7
Rule 9-19, No union member types of xs:ID rule 9-8
Rule 9-20, No union member types of xs:IDREF rule 9-8
Rule 9-21, No union member types of xs:IDREFS rule 9-8
Rule 9-22, No union member types of xs:anySimpleType rule 9-8

fCopyright © OASIS Open 2025. All Rights Reserved.

f{formatted_date} - Page 101 of 114

https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_4-1
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_4-2
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_4-3
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_4-4
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_4-5
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_4-6
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_5-1
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_7-1
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_7-2
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_7-3
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_7-4
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_7-5
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-1
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-2
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-3
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-4
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-5
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-6
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-7
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-8
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-9
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-10
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-11
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-12
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-13
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-14
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-15
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-16
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-17
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-18
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-19
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-20
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-21
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-22

NIEM 5 Rule NIEM 6 Rules

Rule 9-23, No union member types of xs:ENTITY rule 9-8

Rule 9-24, No union member types of xs:ENTITIES rule 9-8

Rule 9-25, Complex type definition is top-level rule 9-29

Rule 9-26, Complex type has data definition rule 7-38

Rule 9-27, No mixed content on complex type rule 9-10

Rule 9-28, No mixed content on complex content rule 9-10

Rule 9-29, Complex type content is explicitly simple or complex rule 9-11

Rule 9-30, Complex content uses extension no matching NIEME rule
Rule 9-31, Base type of complex type with complex content must have complex content rule 9-12

Rule 9-32, Base type of complex type with complex content must have complex content rule 9-12

Rule 9-33, Simple content uses extension no matching NIEM6 rule
Rule 9-34, No complex type disallowed substitutions rule 9-88

Rule 9-35, No complex type disallowed derivation rule 9-89

Rule 9-36, Element declaration is top-level rule 9-42

Rule 9-37, Element declaration has data definition rule 7-38

Rule 9-38, Untyped element is abstract rule 9-13

Rule 9-39, Element of type xs:anySimpleType is abstract rule 9-13

Rule 9-40, Element type not in the XML Schema namespace rule 9-14

Rule 9-41, Element type not in the XML namespace rule 9-14

Rule 9-42, Element type is not simple type

rule 9-15, rule 9-43

Rule 9-43, No element disallowed substitutions rule 9-88
Rule 9-44, No element disallowed derivation rule 9-89
Rule 9-45, No element default value rule 9-17
Rule 9-46, No element fixed value rule 9-17

Rule 9-47, Element declaration is nillable

rule 9-90, rule 9-94

Rule 9-48, Attribute declaration is top-level rule 9-42
Rule 9-49, Attribute declaration has data definition rule 7-38
Rule 9-50, Attribute declaration has type rule 9-16
Rule 9-51, No attribute type of xs:ID rule 9-9
Rule 9-52, No attribute type of xs:IDREF rule 9-9
Rule 9-53, No attribute type of xs:IDREFS rule 9-9
Rule 9-54, No attribute type of xs:ENTITY rule 9-9
Rule 9-55, No attribute type of xs:ENTITIES rule 9-9
Rule 9-56, No attribute type of xs:anySimpleType rule 9-9
Rule 9-57, No attribute default values rule 9-17

fCopyright © OASIS Open 2025. All Rights Reserved.

f{formatted_date} - Page 102 of 114

https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-23
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-24
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-25
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-26
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-27
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-28
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-29
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-30
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-31
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-32
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-33
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-34
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-35
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-36
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-37
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-38
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-39
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-40
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-41
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-42
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-43
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-44
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-45
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-46
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-47
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-48
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-49
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-50
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-51
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-52
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-53
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-54
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-55
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-56
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-57

NIEM 5 Rule NIEM 6 Rules

Rule 9-58, No fixed values for optional attributes rule 9-17
Rule 9-59, No use of element xs:notation rule 9-5
Rule 9-60, Model group does not affect meaning no matching NIEME rule
Rule 9-61, No xs:all rule 9-5
Rule 9-62, xs:sequence must be child of xs:extension rule 9-28
Rule 9-63, xs:sequence must be child of xs:extension or xs:restriction no matching NIEM6 rule
Rule 9-64, No xs:choice rule 9-91
Rule 9-65, xs:choice must be child of xs:sequence rule 9-19
Rule 9-66, Sequence has minimum cardinality 1 rule 9-18
Rule 9-67, Sequence has maximum cardinality 1 rule 9-18
Rule 9-68, Choice has minimum cardinality 1 rule 9-20
Rule 9-69, Choice has maximum cardinality 1 rule 9-20
Rule 9-70, No use of xs:any rule 8-10
Rule 9-71, No use of xs:anyAttribute rule 8-10
Rule 9-72, No use of xs:unique rule 9-5
Rule 9-73, No use of xs:key rule 9-5
Rule 9-74, No use of xs:keyref rule 9-5
Rule 9-75, No use of xs:group rule 9-5
Rule 9-76, No definition of attribute groups rule 9-5
Rule 9-77, Comment is not recommended rule 9-21
Rule 9-78, Documentation element has no element children rule 9-22
Rule 9-79, xs:appinfo children are comments, elements, or whitespace rule 9-81
Rule 9-80, Appinfo child elements have namespaces rule 9-82
Rule 9-81, Appinfo descendants are not XML Schema elements rule 9-83
Rule 9-82, Schema has data definition rule 7-37
Rule 9-83, Schema document defines target namespace rule 8-1
Rule 9-84, Target namespace is absolute URI rule 8-1
Rule 9-85, Schema has version rule 8-7
Rule 9-86, No disallowed substitutions rule 9-88
Rule 9-87, No disallowed derivations rule 9-89
Rule 9-88, No use of xs:redefine rule 9-5
Rule 9-89, No use of xs:include rule 9-5
Rule 9-90, xs:import must have namespace rule 9-23
Rule 9-91, XML Schema document set must be complete rule 10-8
Rule 9-92, Namespace referenced by attribute type is imported no matching NIEME rule

fCopyright © OASIS Open 2025. All Rights Reserved.

f{formatted_date} - Page 103 of 114

https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-58
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-59
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-60
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-61
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-62
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-63
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-64
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-65
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-66
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-67
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-68
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-69
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-70
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-71
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-72
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-73
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-74
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-75
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-76
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-77
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-78
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-79
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-80
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-81
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-82
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-83
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-84
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-85
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-86
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-87
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-88
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-89
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-90
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-91
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-92

NIEM 5 Rule NIEM 6 Rules

Rule 9-93, Namespace referenced by attribute base is imported no matching NIEME rule
Rule 9-94, Namespace referenced by attribute itemType is imported no matching NIEME rule
Rule 9-95, Namespaces referenced by attribute memberTypes is imported no matching NIEME rule
Rule 9-96, Namespace referenced by attribute ref is imported no matching NIEME rule
Rule 9-97, Namespace referenced by attribute substitutionGroup is imported no matching NIEME rule
Rule 10-1, Complex type has a category rule 9-30
Rule 10-2, Object type with complex content is derived from structures:ObjectType rule 9-34
Rule 10-3, RoleOf element type is an object type no matching NIEME rule
Rule 10-4, Only object type has RoleOf element no matching NIEME rule
Rule 10-5, RoleOf elements indicate the base types of a role type no matching NIEME rule
Rule 10-6, Instance of RoleOf element indicates a role object no matching NIEME rule
Rule 10-7, Import of external namespace has data definition rule 9-49
Rule 10-8, External adapter type has indicator no matching NIEME rule
Rule 10-9, Structure of external adapter type definition follows pattern rule 9-50
Rule 10-10, Element use from external adapter type defined by external schema documents rule 9-51
Rule 10-11, External adapter type not a base type rule 9-52
Rule 10-12, External adapter type not a base type rule 9-52
Rule 10-13, External attribute use only in external adapter type rule 9-93
Rule 10-14, External attribute use has data definition rule 9-53
Rule 10-15, External attribute use not an ID rule 9-54
Rule 10-16, External element use has data definition rule 9-55

Rule 10-17, Name of code type ends in CodeType

rule 7-6, rule 7-9

Rule 10-18, Code type corresponds to a code list

rule 7-6, rule 7-9

Rule 10-19, Element of code type has code representation term

rule 7-12

Rule 10-20, Proxy type has designated structure

rule 9-56, rule 9-57

Rule 10-21, Association type derived from structures:AssociationType

rule 7-5, rule 9-32

Rule 10-22, Association element type is an association type rule 7-11
Rule 10-23, Augmentable type has augmentation point element rule 9-64
Rule 10-24, Augmentable type has at most one augmentation point element rule 9-64
Rule 10-25, Augmentation point element corresponds to its base type rule 9-66
Rule 10-26, An augmentation point element has no type rule 9-67
Rule 10-27, An augmentation point element has no substitution group rule 9-68
Rule 10-28, Augmentation point element is only referenced by its base type rule 9-69
Rule 10-29, Augmentation point element use is optional rule 9-70

fCopyright © OASIS Open 2025. All Rights Reserved.

f{formatted_date} - Page 104 of 114

https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-93
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-94
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-95
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-96
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_9-97
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-1
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-2
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-3
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-4
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-5
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-6
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-7
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-8
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-9
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-10
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-11
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-12
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-13
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-14
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-15
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-16
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-17
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-18
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-19
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-20
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-21
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-22
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-23
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-24
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-25
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-26
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-27
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-28
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-29

NIEM 5 Rule NIEM 6 Rules

Rule 10-30, Augmentation point element use is unbounded rule 9-70

Rule 10-31, Augmentation point element use must be last element in its base type rule 9-71

Rule 10-32, Element within instance of augmentation type modifies base no matching NIEME rule
Rule 10-33, Only an augmentation type name ends in AugmentationType rule 9-58

Rule 10-34, Schema component with name ending in AugmentationType is an augmentation type rule 9-58

Rule 10-35, Type derived from structures:AugmentationType is an augmentation type rule 9-33

Rule 10-36, Augmentation element type is an augmentation type rule 9-59, rule 9-73

Rule 10-37, Augmentation elements are not used directly rule 9-76

Rule 10-38, Metadata type has data about data no matching NIEME rule
Rule 10-39, Metadata types are derived from structures:MetadataType no matching NIEM6 rule
Rule 10-40, Metadata element declaration type is a metadata type no matching NIEME rule
Rule 10-41, Metadata element has applicable elements no matching NIEME rule
Rule 10-42, Name of element that ends in Representation is abstract rule 7-10

Rule 10-43, A substitution for a representation element declaration is a value for a type no matching NIEME rule
Rule 10-44, Schema component name composed of English words rule 7-15

Rule 10-45, Schema component name has xml:lang rule 8-8

Rule 10-46, Schema component names have only specific characters rule 7-16

Rule 10-47, Punctuation in component name is a separator rule 7-20

Rule 10-48, Names use camel case rule 7-17

Rule 10-49, Attribute name begins with lower case letter rule 7-18

Rule 10-50, Name of schema component other than attribute and proxy type begins with upper case letter rule 7-19

Rule 10-51, Names use common abbreviations rule 7-34

Rule 10-52, Local term declaration is local to its schema document rule 7-35

Rule 10-53, Local terminology interpretation no matching NIEM6 rule
Rule 10-54, Singular form is preferred in name rule 7-21

Rule 10-55, Present tense is preferred in name rule 7-22

Rule 10-56, Name does not have nonessential words rule 7-23

Rule 10-57, Element or attribute name follows pattern rule 7-24

Rule 10-58, Object-class term identifies concrete category rule 7-25

Rule 10-59, Property term describes characteristic or subpart rule 7-26

Rule 10-60, Name may have multiple qualifier terms rule 7-27

Rule 10-61, Name has minimum necessary number of qualifier terms rule 7-28

Rule 10-62, Order of qualifiers is not significant rule 7-29

Rule 10-63, Redundant term in name is omitted rule 7-30

fCopyright © OASIS Open 2025. All Rights Reserved.

f{formatted_date} - Page 105 of 114

https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-30
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-31
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-32
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-33
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-34
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-35
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-36
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-37
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-38
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-39
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-40
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-41
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-42
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-43
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-44
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-45
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-46
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-47
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-48
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-49
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-50
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-51
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-52
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-53
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-54
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-55
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-56
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-57
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-58
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-59
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-60
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-61
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-62
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-63

NIEM 5 Rule NIEM 6 Rules

Rule 10-64, Element with simple content has representation term rule 7-31

Rule 10-65, Element with complex content has representation term when appropriate rule 7-32

Rule 10-66, Element with complex content has representation term only when appropriate rule 7-33

Rule 10-67, Machine-readable annotations are valid no matching NIEME rule
Rule 10-68, Component marked as deprecated is deprecated component rule 9-84

Rule 10-69, Deprecated annotates schema component rule 9-80

Rule 10-70, External import indicator annotates import no matching NIEM6 rule
Rule 10-71, External adapter type indicator annotates complex type no matching NIEM6 rule
Rule 10-72, appinfo:appliesToTypes annotates metadata element no matching NIEM6 rule
Rule 10-73, appinfo:appliesToTypes references types no matching NIEME rule
Rule 10-74, appinfo:appliesToElements annotates metadata element no matching NIEM6 rule
Rule 10-75, appinfo:appliesToElements references elements no matching NIEME rule
Rule 10-76, appinfo:LocalTerm annotates schema rule 9-85

Rule 10-77, appinfo:LocalTerm has literal or definition rule 7-36

Rule 10-78, Use structures consistent with specification rule 10-9

Rule 11-1, Name of type ends in Type rule 7-2

Rule 11-2, Only types have name ending in Type or SimpleType

rule 7-2, rule 9-25

Rule 11-3, Base type definition defined by conformant schema rule 9-36

Rule 11-4, Name of simple type ends in SimpleType rule 9-26

Rule 11-5, Use lists only when data is uniform no matching NIEM6 rule
Rule 11-6, List item type defined by conformant schemas rule 9-39

Rule 11-7, Union member types defined by conformant schemas rule 9-40

Rule 11-8, Name of a code simple type ends in CodeSimpleType rule 7-8

Rule 11-9, Code simple type corresponds to a code list rule 7-8

Rule 11-10, Attribute of code simple type has code representation term rule 7-12

Rule 11-11, Complex type with simple content has structures:SimpleObjectAttributeGroup rule 9-35

Rule 11-12, Element type does not have a simple type name rule 9-43

Rule 11-13, Element type is from conformant namespace rule 9-44

Rule 11-14, Name of element that ends in Abstract is abstract rule 7-10

Rule 11-15, Name of element declaration with simple content has representation term rule 7-31

Rule 11-16, Name of element declaration with simple content has representation term rule 7-31

Rule 11-17, Element substitution group defined by conformant schema rule 9-45

Rule 11-18, Attribute type defined by conformant schema rule 9-44

Rule 11-19, Attribute name uses representation term rule 7-31

Rule 11-20, Element or attribute declaration introduced only once into a type no matching NIEME rule

fCopyright © OASIS Open 2025. All Rights Reserved.

f{formatted_date} - Page 106 of 114

https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-64
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-65
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-66
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-67
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-68
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-69
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-70
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-71
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-72
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-73
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-74
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-75
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-76
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-77
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_10-78
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-1
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-2
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-3
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-4
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-5
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-6
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-7
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-8
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-9
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-10
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-11
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-12
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-13
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-14
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-15
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-16
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-17
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-18
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-19
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-20

NIEM 5 Rule NIEM 6 Rules

Rule 11-21, Element reference defined by conformant schema rule 9-37

Rule 11-22, Referenced attribute defined by conformant schemas rule 9-37

Rule 11-23, Schema uses only known attribute groups rule 9-38

Rule 11-24, Data definition does not introduce ambiguity rule 7-42

Rule 11-25, Object class has only one meaning rule 7-43

Rule 11-26, Data definition of a part does not redefine the whole rule 7-44

Rule 11-27, Do not leak representation into data definition rule 7-45

Rule 11-28, Data definition follows 11179-4 requirements rule 7-46

Rule 11-29, Data definition follows 11179-4 recommendations rule 7-47

Rule 11-30, xs:documentation has xml:lang rule 8-8

Rule 11-31, Standard opening phrase for augmentation point element data definition rule 9-61

Rule 11-32, Standard opening phrase for augmentation element data definition rule 9-62

Rule 11-33, Standard opening phrase for metadata element data definition no matching NIEM6 rule
Rule 11-34, Standard opening phrase for association element data definition rule 7-49

Rule 11-35, Standard opening phrase for abstract element data definition rule 7-48

Rule 11-36, Standard opening phrase for date element or attribute data definition rule 7-50

Rule 11-37, Standard opening phrase for quantity element or attribute data definition rule 7-51

Rule 11-38, Standard opening phrase for picture element or attribute data definition rule 7-52

Rule 11-39, Standard opening phrase for indicator element or attribute data definition rule 7-53

Rule 11-40, Standard opening phrase for identification element or attribute data definition rule 7-54

Rule 11-41, Standard opening phrase for name element or attribute data definition rule 7-55

Rule 11-42, Standard opening phrase for element or attribute data definition rule 7-56

Rule 11-43, Standard opening phrase for association type data definition rule 7-57

Rule 11-44, Standard opening phrase for augmentation type data definition rule 9-63

Rule 11-45, Standard opening phrase for metadata type data definition no matching NIEME rule
Rule 11-46, Standard opening phrase for complex type data definition rule 7-58

Rule 11-47, Standard opening phrase for simple type data definition rule 7-58

Rule 11-48, Same namespace means same components no matching NIEM6 rule
Rule 11-49, Different version means different view no matching NIEME rule
Rule 11-50, Reference schema document imports reference schema document rule 8-12

Rule 11-51, Extension schema document imports reference or extension schema document no matching NIEM6 rule
Rule 11-52, Structures imported as conformant no matching NIEME rule
Rule 11-53, XML namespace imported as conformant no matching NIEM6 rule

fCopyright © OASIS Open 2025. All Rights Reserved. f{formatted_date} - Page 107 of 114

https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-21
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-22
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-23
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-24
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-25
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-26
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-27
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-28
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-29
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-30
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-31
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-32
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-33
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-34
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-35
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-36
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-37
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-38
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-39
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-40
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-41
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-42
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-43
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-44
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-45
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-46
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-47
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-48
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-49
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-50
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-51
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-52
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-53

NIEM 5 Rule NIEM 6 Rules

Rule 11-54, Each namespace may have only a single root schema in a schema set rule 10-5

Rule 11-55, Consistently marked namespace imports rule 10-6

Rule 12-1, Instance must be schema-valid rule 12-2

Rule 12-2, Empty content has no meaning no matching NIEME rule
Rule 12-3, Element has only one resource identifying attribute rule 12-7

Rule 12-4, Attribute structures:ref must reference structures:id rule 12-8

Rule 12-5, Linked elements have same validation root rule 12-9

Rule 12-6, Attribute structures:ref references element of correct type rule 12-10

Rule 12-7, structures:uri denotes resource identifier no matching NIEME rule
Rule 12-8, structures:id and structures:ref denote resource identifier no matching NIEME rule
Rule 12-9, Nested elements and references have the same meaning. no matching NIEM6 rule
Rule 12-10, Order of properties is expressed via structures:sequencelD no matching NIEME rule
Rule 12-11, Metadata applies to referring entity no matching NIEME rule
Rule 12-12, Referent of structures:relationshipMetadata annotates relationship no matching NIEM6 rule
Rule 12-13, Values of structures:metadata refer to values of structures:id no matching NIEME rule
Rule 12-14, Values of structures:relationshipMetadata refer to values of structures:id no matching NIEM6 rule
Rule 12-15, structures:metadata and structures:relationshipMetadata refer to metadata elements no matching NIEM6 rule
Rule 12-16, Attribute structures:metadata references metadata element no matching NIEME rule
Rule 12-17, Attribute structures:relationshipMetadata references metadata element no matching NIEM6 rule
Rule 12-18, Metadata is applicable to element no matching NIEME rule

fCopyright © OASIS Open 2025. All Rights Reserved. f{formatted_date} - Page 108 of 114

https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-54
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_11-55
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_12-1
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_12-2
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_12-3
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_12-4
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_12-5
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_12-6
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_12-7
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_12-8
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_12-9
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_12-10
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_12-11
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_12-12
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_12-13
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_12-14
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_12-15
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_12-16
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_12-17
https://reference.niem.gov/niem/specification/naming-and-design-rules/5.0/niem-ndr-5.0.html#rule_12-18

Appendix E. Table of examples

« Example 2-3: Code example with truncated line and omitted closing braces

« Example 3-2: Messages in XML and JSON syntax

« Example 3-3: Example message format schemas

« Example 3-4: Example message model in XSD and CMF

« Example 3-5: Message specifications, types, and formats

« Example 3-9: CMF model in XML and JSON syntax

« Example 3-10: RDF triples from a NIEM model and message
« Example 4-8: Namespace object in CMF and XSD

o Example 4-12: Component object (abstract) in CMF and XSD

« Example 4-17: Instance of a class in XML and JSON

o Example 4-18: A Class object in CMF and XSD (CCC type)

« Example 4-20: Instance of a literal class in XML and JSON

o Example 4-21: A literal class object in CMF and XSD (CSC type)

o Example 4-23: ChildPropertyAssociation object in CMF and XSD

o Example 4-25: AnyPropertyAssociation objects in CMF and XSD

o Example 4-30: ObjectProperty object in CMF and XSD

« Example 4-33: DataProperty object in CMF and XSD

+ Example 4-36: Plain CMF datatype object for xs:string

o Example 4-38: List object in CMF and XSD

« Example 4-41: Union object in CMF and XSD

« Example 4-44: Restriction object in CMF and XSD

o Example 4-47: Facet object in CMF and XSD

« Example 4-50: CodeListBinding object in CMF and XSD

« Example 4-54: Augmenting a single class in CMF

« Example 4-55: Global augmentation in CMF

o Example 4-58: Attribute augmentation in XSD and CMF model representations
« Example 4-59: Attribute augmentations in XML and JSON messages

« Example 4-60: Mandatory global attribute augmentation in XSD model representation

o Example 4-61:

« Example 4-62: An augmentation point element declaration

« Example 4-63: Augmenting a class with an augmentation type and element in XSD
« Example 4-64: Element augmentation in XML and JSON messages

« Example 4-65: Augmenting a class with an element property in XSD

« Example 4-66: Augmentation with an element property in XML

« Example 4-67: Augmenting every object class with an element property in XSD
« Example 4-68: Global augmentation with an element property in XML

o Example 4-69: Augmenting a literal class with an element property

« Example 4-70: Reference attribute augmentation in XML and JSON

« Example 4-71: Augmenting every literal class with an element property

o Example 4-73: Example LocalTerm objects in CMF and XSD

« Example 5-1:
« Example 5-2:
« Example 5-3:
« Example 5-4:
« Example 5-5:
« Example 5-6:
« Example 5-7:
« Example 5-8:
« Example 5-9:

A literal class in CMF and XSD

Objects of a literal class in an XML and JSON message

A restriction datatype in a CMF and XSD model subset

A data property in an XML and JSON message

A datatype in CMF and XSD

A data property in an XML and JSON message

A literal class in a CMF and XSD model subset

An object property with a code list class in an XML and JSON message
Metadata properties used in a designer's own class

« Example 5-10: Metadata object property augmenting a reused class
« Example 5-11: Example of an ordinary property

o Example 5-12: Example of a relationship property

o Example 5-13: Relationship property in CMF and XSD

« Example 5-14: Roles and object identifiers

o Example 5-15: The DateRepresentation pattern in CMF and XSD

« Example 6-1:
« Example 6-2:

Conformance target assertion in XSD
Conformance target assertion in CMF

Complex type with complex content (CCC type) defining an object class in an XSD model representation

fCopyright © OASIS Open 2025. All Rights Reserved.

f{formatted_date} - Page 109 of 114

Example 14-1:
Example 14-4:
Example 14-5:
: RDF entailed by an ObjectProperty object
Example 14-7:
Example 14-8:
Example 14-9:

Example 14-6

Natural language documentation in CMF and XSD
RDF entailed by a Class object
RDF entailed by a DataProperty object

NIEM objects, properties, and values
Message objects in NIEM XML and NIEM JSON
NIEM objects without identifiers

Example 14-10: NIEM objects with fragment identifiers

Example 14-11: NIEM objects identified by absolute URI

Example 14-12: Objects with fragment identifiers and message base URI
Example 14-13: Object property and class

Example 14-14: Data property and datatype in RDF

Example 14-15: Literal class definition of a language-tagged string
Example 14-16: Language-tagged string in XML, JSON, and RDF
Example 14-17: Repeatable object property

Example 14-18: Repeatable data property with a List datatype
Example 14-19: Ordered property values

Example 14-20: RDF1.2 equivalent for a relationship property
Example 14-22: Reference attribute and RDF

Example 14-23: Augmentation element and RDF

fCopyright © OASIS Open 2025. All Rights Reserved.

f{formatted_date} - Page 110 of 114

Appendix F. Table of figures

« Figure 2-1: User roles and activities

« Figure 3-1: Message types, message formats, and messages

o Figure 3-6: NIEM communities and data models

o Figure 3-7: High-level view of the NIEM metamodel

o Figure 3-8: Message, message model, and metamodel relationships

o Figure 3-11: Knowledge graph portrayal of a NIEM model and message
o Figure 4-1: The NIEM metamodel

« Figure 4-4: Model class diagram

o Figure 4-6: Namespace class diagram

o Figure 4-10: Component class diagram

o Figure 4-14: Class, AnyPropertyAssociation, and ChildPropertyAssociation class diagram
o Figure 4-27: Property class diagram

« Figure 4-35: Datatype classes

o Figure 4-52: Augmentation class diagram

o Figure 14-21: RDF graph for a relationship property

fCopyright © OASIS Open 2025. All Rights Reserved. f{formatted_date} - Page 111 of 114

Appendix

o Table 2-2:
o Table 4-2:
o Table 4-3:
o Table 4-5
o Table 4-7:
o Table 4-9:
« Table 4-11
o Table 4-13
o Table 4-15
« Table 4-16
o Table 4-19

o Table 4-22:
o Table 4-24:
« Table 4-26:
o Table 4-28:
o Table 4-29:
o Table 4-31:
o Table 4-32:
o Table 4-34:
o Table 4-37:
o Table 4-39:
o Table 4-40:
o Table 4-42:
o Table 4-43:
o Table 4-45:
o Table 4-46:

o Table 4-48

o Table 4-49:
o Table 4-51:
o Table 4-53:
o Table 4-56:
o Table 4-57:
o Table 4-72:
o Table 4-74:
o Table 4-75:

e Table 7-1:
o Table 14-2

« Table 14-3: Correspondence of model terminology in CMF, XSD, and RDF

G. Table of tables

Relevant document sections by user role
Definition of columns in metamodel property tables
Definition of columns in CMF-XSD mapping tables

: Properties of the Model object class

Properties of the Namespace object class
Namespace object properties in CMF and XSD

: Properties of the Component abstract class

: Component object properties in CMF and XSD

: Properties of the Class object class

: ReferenceCode code list

: Class object object properties in CMF and XSD
Properties of the ChildPropertyAssociation object class
ChildPropertyAssociation object properties in CMF and XSD
ChildPropertyAssociation object properties in CMF and XSD
Properties of the Property abstract class

Properties of the ObjectProperty object class
ObjectProperty object properties in CMF and XSD
Properties of the DataProperty object class
DataProperty object properties in CMF and XSD
Properties of the List object class

List object properties in CMF and XSD

Properties of the Union object class

Union object properties in CMF and XSD
Properties of the Restriction object class
Restriction object properties in CMF and XSD
Properties of the Facet object class

: Facet object properties in CMF and XSD
Properties of the CodeListBinding object class
CodelListBinding object properties in CMF and XSD
Properties of the Augmentation object class
GlobalClassCode code list

Augmentation object properties in CMF and XSD
Properties of the LocalTerm object class
LocalTerm object properties in CMF and XSD
Properties of the TextType object class

Property representation terms

: Meaning of NIEM data

fCopyright © OASIS Open 2025. All Rights Reserved.

f{formatted_date} - Page 112 of 114

Appendix H. Acknowledgments

H.1 Participants
The following individuals have participated in the creation of this specification and are gratefully acknowledged:

Project-name OP Members:

First Name Last Name Company
Aubrey Beach JS J6

Brad Bollinger Ernst & Young
James Cabral Individual
Tom Carlson GTRI

Chuck Chipman GTRI

Mike Douklias JS J6
Katherine Escobar JS J6
Lavdjola Farrington JS J6

Dave Hardy JS J6

Mike Hulme Unisys

Eric Jahn Alexandria Consulting
Dave Kemp NSA

Vamsi Kondannagari Integral Fed
Shunda Louis JS J6

Peter Madruga GTRI
Christina Medlin GTRI

Joe Mierwa Mission Critical Partners
April Mitchell FBI

Carl Nelson RISS

Scott Renner MITRE

Beth Smalley JS J6

Duncan Sparrell sFractal
Jennifer Stathakis NIST

Stephen Sullivan JS J6

Josh Wilson FBI

fCopyright © OASIS Open 2025. All Rights Reserved. f{formatted_date} - Page 113 of 114

Appendix I. Notices

(This required section should not be altered, except to modify the license information in the second paragraph if needed.)
Copyright © OASIS Open 2025. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property Rights Policy (the "OASIS IPR
Policy"). The full Policy may be found at the OASIS website.

This specification is published under Attribution 4.0 International (CC BY 4.0). Code associated with this specification is provided under Apache
License 2.0.

All contributions made to this project have been made under the OASIS Contributor License Agreement (CLA).

For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent
licensing terms, please refer to the NIEMOpen IPR Statement page.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or
assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, without restriction of any kind, provided
that the above copyright notice and this section are included on all such copies and derivative works. However, this document itself may not be
modified in any way, including by removing the copyright notice or references to OASIS, except as needed for the purpose of developing any
document or deliverable produced by an OASIS Open Project (in which case the rules applicable to copyrights, as set forth in the OASIS IPR
Policy, must be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT
INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. OASIS AND ITS MEMBERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF ANY USE OF THIS DOCUMENT OR ANY PART THEREOF.

As stated in the OASIS IPR Policy, the following three paragraphs in brackets apply to OASIS Standards Final Deliverable documents (Project
Specifications, OASIS Standards, or Approved Errata).

[OASIS requests that any OASIS Party or any other party that believes it has patent claims that would necessarily be infringed by
implementations of this OASIS Standards Final Deliverable, to notify OASIS TC Administrator and provide an indication of its willingness to
grant patent licenses to such patent claims in a manner consistent with the IPR Mode of the OASIS Open Project that produced this
deliverable.]

[OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of any patent claims that would
necessarily be infringed by implementations of this OASIS Standards Final Deliverable by a patent holder that is not willing to provide a license
to such patent claims in a manner consistent with the IPR Mode of the OASIS Open Project that produced this OASIS Standards Final
Deliverable. OASIS may include such claims on its website, but disclaims any obligation to do so.]

[OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the
implementation or use of the technology described in this OASIS Standards Final Deliverable or the extent to which any license under such
rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS'
procedures with respect to rights in any document or deliverable produced by an OASIS Open Project can be found on the OASIS website.
Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made
to obtain a general license or permission for the use of such proprietary rights by implementers or users of this OASIS Standards Final
Deliverable, can be obtained from the OASIS TC Administrator. OASIS makes no representation that any information or list of intellectual
property rights will at any time be complete, or that any claims in such list are, in fact, Essential Claims.]

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be used only to refer to the organization
and its official outputs. OASIS welcomes reference to, and implementation and use of, specifications, while reserving the right to enforce its
marks against misleading uses. Please see https://www.oasis-open.org/policies-guidelines/trademark/ for above guidance.

fCopyright © OASIS Open 2025. All Rights Reserved. f{formatted_date} - Page 114 of 114

https://www.oasis-open.org/policies-guidelines/ipr/
https://creativecommons.org/licenses/by/4.0/legalcode
https://www.apache.org/licenses/LICENSE-2.0
https://www.oasis-open.org/policies-guidelines/open-projects-process/#individual-cla-exhibit
https://github.com/niemopen/oasis-open-project/blob/main/IPR-STATEMENT.md
https://www.oasis-open.org/

	NIEM Naming and Design Rules (NDR) Version 6.0
	Project Specification 01
	29 August 2025
	This stage:
	Previous stage:
	Latest stage:
	Open Project:
	Project Chair:
	NTAC Technical Steering Committee Chairs:
	Editors:
	Related work:
	Abstract:
	Status:
	Key words:
	Citation format:

	Notices

	Table of Contents
	1. Introduction
	1.1 Glossary
	1.1.1 Definitions of terms
	1.1.2 Acronyms and abbreviations

	2. How To Read This Document
	2.1 Document references
	2.2 Defined terms
	2.3 Typographic conventions
	2.4 Clark notation and qualified names
	2.5 Use of namespaces and namespace prefixes

	3. Overview of the NIEM Technical Architecture
	3.1 Machine-to-machine data specifications
	3.1.1 Messages
	3.1.2 Message format
	3.1.3 Message type
	3.1.4 Message specification

	3.2 Reuse of community-agreed data models
	3.3 Reuse of open standards
	3.4 The NIEM metamodel
	3.5 NIEM model representations: XSD and CMF
	3.6 Namespaces
	3.7 Model extensions
	3.8 Model and message semantics

	4. Data models in NIEM
	4.1 Model
	4.2 Namespace
	4.3 Component
	4.4 Class
	4.5 ChildPropertyAssociation
	4.6 AnyPropertyAssociation
	4.7 Property
	4.8 ObjectProperty
	4.9 DataProperty
	4.10 Datatype
	4.11 List
	4.12 Union
	4.13 Restriction
	4.14 Facet
	4.15 CodeListBinding
	4.16 Augmentation class
	4.16.1 Augmentations in CMF
	4.16.2 Augmentations in XSD
	4.16.2.1 Attribute augmentations in XSD
	4.16.2.2 Augmenting one object class or association class with an element property
	4.16.2.3 Augmenting every object class or association class with an element property
	4.16.2.4 Augmenting a literal class with an element property in XSD

	4.17 LocalTerm
	4.18 TextType

	5. Data modeling patterns
	5.1 Datatypes and literal classes
	5.2 Metadata and augmentation
	5.3 Relationship properties
	5.4 Roles
	5.5 Representation pattern
	5.6 Container objects

	6. Conformance
	6.1 Conformance targets
	6.1.1 Namespace conformance target
	6.1.2 Schema document conformance target
	6.1.3 Model conformance target
	6.1.4 Message conformance target

	6.2 Conformance target assertions
	6.3 Conformance testing

	7. Rules for model components
	7.1 Rules for component names
	7.1.1 Rules based on kind of component
	7.1.1.1 Rules for names of Class components
	7.1.1.2 Rules for names of Datatype components
	7.1.1.3 Rules for names of Property components

	7.1.2 Rules for composition of component names
	7.1.3 General component naming rules from ISO 11179-5
	7.1.4 Property naming rules from ISO 11179-5
	7.1.4.1 Object-class term
	7.1.4.2 Property term
	7.1.4.3 Qualifier terms
	7.1.4.4 Representation term

	7.1.5 Acronyms, abbreviations, and jargon

	7.2 Rules for component documentation
	7.2.1 Rules for documented components
	7.2.2 Rules for data definitions
	7.2.3 Data definition rules from ISO 11179-4
	7.2.4 Data definition opening phrases
	7.2.4.1 Opening phrases for properties
	7.2.4.2 Opening phrases for classes

	7.3 Rules for specifications of components

	8. Rules for namespaces
	8.1 Rules for properties of namespaces
	8.2 Rules for reference namespaces
	8.3 Rules for extension namespaces
	8.4 Rules for subset namespaces

	9. Rules for schema documents
	9.1 Rules for the NIEM profile of XSD
	9.2 Rules for XSD types
	9.3 Rules for attribute and element declarations
	9.4 Rules for adapters and external components
	9.5 Rules for proxy types
	9.6 Rules for augmentations
	9.7 Rules for machine-readable annotations
	9.8 Rules for reference schema documents
	9.9 Rules for extension schema documents

	10. Rules for models
	10.1 Rules for model files
	10.2 Rules for schema document sets

	11. Rules for message types and message formats
	12. Rules for XML messages
	13. Rules for JSON messages
	14. Interpretation of NIEM data
	14.1 RDF interpretation of NIEM models
	14.1.1 Model terminology in CMF, XSD, and RDF
	14.1.2 Identifiers for model components
	14.1.3 RDF interpretation of Class objects
	14.1.4 RDF interpretation of DataProperty objects
	14.1.5 RDF interpretation of ObjectProperty objects

	14.2 RDF interpretation of NIEM messages
	14.2.1 Objects, properties, and values
	14.2.2 Messages and message objects
	14.2.3 Objects and object identifiers
	14.2.4 Object properties and object class
	14.2.5 Data properties and literal values
	14.2.6 Literal class and language tags
	14.2.7 Repeatable properties
	14.2.8 Ordered properties
	14.2.9 Relationship properties
	14.2.10 Reference attributes
	14.2.11 Augmentation elements

	Appendix A. References
	A.1 Normative References
	[BCP14]
	[ClarkNS]
	[CMF]
	[Code Lists]
	[CTAS]
	[ISO 11179-4]
	[ISO 11179-5]
	[JSON-LD]
	[OED]
	[RDF 1.2]
	[RFC 2119]
	[RFC 3986]
	[RFC 8174]
	[RFC 8259]
	[SemVer]
	[XML]
	[XML Infoset]
	[XML Namespaces]
	[XML Schema Structures]

	A.2 Informative References
	[NIEM-Tools]
	[webarch]

	Appendix B. Structures namespace
	Appendix C. Index of rules
	Appendix D. Mapping NIEM 5 rules to NIEM 6
	Appendix E. Table of examples
	Appendix F. Table of figures
	Appendix G. Table of tables
	Appendix H. Acknowledgments
	H.1 Participants

	Appendix I. Notices

